首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
When a discocytic erythrocyte (RBC) was partially aspirated into a 1.5-microns glass pipette with a high negative aspiration pressure (delta P = -3.9 kPa), held in the pipette for 30 s (holding time, th), and then released, it underwent a discocyte-echinocyte shape transformation. The degree of shape transformation increased with an increase in th. The echinocytes recovered spontaneously to discocytes in approximately 10 min, and there was no significant difference in recovery time at 20.9 degrees C, 29.5 degrees C, and 37.4 degrees C, respectively. At 11 degrees C the recovery time was significantly elevated to 40.1 +/- 6.7 min. At 20.9 degrees C the shape recovery time varied directly with the isotropic RBC tension induced by the pipetting. Sodium orthovanadate (vanadate, 200 microM), which inhibits the phospholipid translocase, blocks the shape recovery. Chlorpromazine (CP, 25 microM) reversed the pipette-induced echinocytic shape to discocytic in < 2 min, and the RBC became a spherostomatocyte-II after another 30 min. It was hypothesized that the increase in cytosolic pressure during the pipette aspiration induced an isotropic tension in the RBC membrane followed by a net inside-to-outside membrane lipid translocation. After a sudden release of the aspiration pressure the cytosolic pressure and the membrane tension normalized immediately, but the translocated phospholipids remained temporarily "trapped" in the outer layer, causing an area excess and hence the echinocytic shape. The phospholipid translocase activity, when not inhibited by vanadate, caused a gradual return of the translocated phospholipids to the inner layer, and the RBC shape recovered with time.  相似文献   

2.
Intracellular Ca2+ levels in human erythrocytes were increased by incubating them with variable concentrations of Ca2+ in the presence of ionophore A23187. Experiments were done to confirm that the Ca2+ loading did induce changes in the cell shape and membrane protein composition. The effect of the increased cytoplasmic Ca2+ levels on the membrane phospholipid organization was analysed using bee venom and pancreatic phospholipases A2, Merocyanine 540 and fluorescamine as the external membrane probes. About 20% phosphatidylethanolamine (PE) and 0% phosphatidylserine (PS) were hydrolysed by the phospholipases in intact control cells, whereas in identical conditions these enzymes readily degraded, 20-30% PE and 7-30% PS, in Ca2+-loaded erythrocytes, depending on the cytoplasmic Ca2+ concentration. Also, Merocyanine 540 failed to stain the fresh or control erythrocytes, but it labeled the cells loaded with Ca2+. Furthermore, fluorescamine labeled approx. 20% PE in fresh or control erythrocytes while in identical conditions, significantly higher amounts of PE were modified in intact Ca2+-loaded cells. These results demonstrate that Ca2+ loading in human erythrocytes leads to loss of the transbilayer phospholipid asymmetry, and suggest that, together with spectrin, polypeptides 2.1 and 4.1 may also play an important role in maintaining the asymmetric distribution of various phospholipids across the erythrocyte membrane bilayer.  相似文献   

3.
4.
Three potential routes to generation of reactive oxygen species (ROS) from alpha-tocopherolquinone (alpha-TQ) have been identified. The quinone of the water-soluble vitamin E analogue Trolox C (Trol-Q) is reduced by hydrated electron and isopropanol alpha-hydroxyalkyl radical, and the resulting semiquinone reacts with molecular oxygen to form superoxide with a second order rate constant of 1.3 x 10(8) dm(3)/mol/s, illustrating the potential for redox cycling. Illumination (UV-A, 355 nm) of the quinone of 2,2,5,7,8-pentamethyl-6-hydroxychromanol (PMHC-Q) leads to a reactive short-lived (ca. 10(- 6) s) triplet state, able to oxidise tryptophan with a second order rate constant greater than 10(9) dm(3)/mol/s. The triplet states of these quinones sensitize singlet oxygen formation with quantum yields of about 0.8. Such potentially damaging reactions of alpha-TQ may in part account for the recent findings that high levels of dietary vitamin E supplementation lack any beneficial effect and may lead to slightly enhanced levels of overall mortality.  相似文献   

5.
The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg(2+)-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable Kd of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 microM free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.  相似文献   

6.
We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen (1O2). Irradiation of hair shafts (λex > 400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by 1H NMR. After 532-nm excitation, all hair shafts presented the characteristic 1O2 emission (λem = 1270 nm), whose intensity varied inversely with the melanin content. 1O2 lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a 1O2 suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for 1O2 in the solvents in which the hair shafts were suspended, indicating that 1O2 is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress 1O2, with similar efficiencies. The higher amount of 1O2 generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of 1O2 in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin.  相似文献   

7.
The roles played by singlet oxygen (1O2) in photodynamic therapy are not fully understood yet. In particular, the mobility of 1O2 within cells has been a subject of debate for the last two decades. In this work, we report on the kinetics of 1O2 formation, diffusion, and decay in human skin fibroblasts. 1O2 has been photosensitized by two water-soluble porphyrins targeting different subcellular organelles, namely the nucleus and lysosomes, respectively. By recording the time-resolved near-IR phosphorescence of 1O2 and that of its precursor the photosensitizer's triplet state, we find that the kinetics of singlet oxygen formation and decay are strongly dependent on the site of generation. 1O2 photosensitized in the nucleus is able to escape out of the cells while 1O2 photosensitized in the lysosomes is not. Despite showing a lifetime in the microsecond time domain, 1O2 decay is largely governed by interactions with the biomolecules within the organelle where it is produced. This observation may reconcile earlier views that singlet oxygen-induced photodamage is highly localized, while its lifetime is long enough to diffuse over long distances within the cells.  相似文献   

8.
Kamp D  Sieberg T  Haest CW 《Biochemistry》2001,40(31):9438-9446
An increase of the intracellular Ca(2+) concentration in erythrocytes is known to activate rapid nonspecific bidirectional translocation of membrane-inserted phospholipid probes and to decrease the asymmetric distribution of endogenous membrane phospholipids. These scrambling effects are now shown to be suppressed by pretreatment of cells with the essentially impermeable reagents 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 2,4,6-trinitrobenzenesulfonate. The inhibitory effects are no longer observed during renewed activation of scrambling following a first transient activation by Ca(2+). Assuming the involvement of the human scramblase, this suggests a conformational alteration of this protein during activation by Ca(2+). Marked suppression of scrambling activity is also observed in cells pretreated with the disulfide reducing agent dithioerythritol which can be reverted by the SH oxidizing agent diamide. This indicates the importance of intramolecular and/or intersubunit disulfide bonds for the function of the scramblase. On the other hand, treatment of cells with the SH reagents N-ethylmaleimide and phenylarsine oxide enhances Ca(2+)-activated scrambling and diminution of asymmetry of membrane phospholipids. This suggests an allosteric connection of several protein SH groups to the translocation mechanism. The inhibitors retain their strong suppressive effects. Besides covalent modification, addition of oligomycin highly stimulates and addition of clotrimazole suppresses the Ca(2+)-activated translocation. No evidence for a role of the ATP-binding cassette transporter ABCA1 in the Ca(2+)-activated outward translocation is obtained. Suppression of phospholipid scrambling by dithioerythritol inhibits Ca(2+)-induced spheroechinocytosis and reduces the extent of subsequent microvesiculation. Scrambling of endogenous phospholipids is proposed to induce echinocytosis and to have only a stimulatory effect on microvesiculation.  相似文献   

9.
The transbilayer diffusion of unlabeled ceramides with different acyl chains (C6-Cer, C10-Cer, and C16-Cer) was investigated in giant unilamellar vesicles (GUVs) and in human erythrocytes. Incorporation of a very small percentage of ceramides (approximately 0.1% of total lipids) to the external leaflet of egg phosphatidylcholine GUVs suffices to trigger a shape change from prolate to pear shape vesicle. By observing the reversibility of this shape change the transmembrane diffusion of lipids was inferred. We found a half-time for unlabeled ceramide flip-flop below 1 min at 37 degrees C. The rapid diffusion of ceramides in a phosphatidylcholine bilayer was confirmed by flip-flop experiments with a spin-labeled ceramide analogue incorporated into large unilamellar vesicles. Shape change experiments were also carried out with human erythrocytes to determine the trans-membrane diffusion of unlabeled ceramides into a biological membrane. Addition of exogenous ceramides to the external leaflet of human erythrocytes did not trigger echinocyte formation immediately as one would anticipate from an asymmetrical accumulation of new amphiphiles in the outer leaflet but only after approximately 15 min of incubation at 20 degrees C in the presence of an excess of ceramide. We interpret these data as being indicative of a rapid ceramide equilibration between both erythrocyte leaflets as indicated also by electron spin resonance spectroscopy with a spin-labeled ceramide. The late appearance of echinocytes could reveal a progressive trapping of a fraction of the ceramide molecules in the outer erythrocytes leaflet. Thus, we cannot exclude the trapping of ceramides into plasma membrane domains.  相似文献   

10.
The ability of D-α-tocopherol to act as a quencher of 1O2 (singlet oxygen) was tested with a biological source of 1O2, namely the phagocytosis activated myeloperoxidase contained in the homogenate of human circulating polymorphonuclear leukocytes.With this system, the 1O2 quenching efficiency of exogenously added D-α-tocopherol was estimated from its inhibitory effect on the luminol amplified chemiluminescence. This inhibitory effect was dose dependent. D-α-tocopherol was also efficient in quenching the chemiluminescence generated through the H2O2-horseradish system. In both systems the quenching effect may be almost entirely “physical”, since very little tocopherol was destroyed when compared to the relatively large amount of H2O2 consumed.  相似文献   

11.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

12.
Effect of oxygen tension on glycolysis in human erythrocytes   总被引:1,自引:0,他引:1  
  相似文献   

13.
Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O2(1Δg). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O2(1Δg) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high. O2(1Δg) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O2(1Δg) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data.  相似文献   

14.
To elucidate the role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes, we examined the interaction of erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion of human erythrocytes was monitored by light microscopy as well as spectrophotometrically by the octadecylrhodamine dequenching assay. Phospholipid translocation and distribution between the inner and the outer leaflet of intact red blood cells were determined with spin-labeled phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Significant fusion of lipid-asymmetric red blood cells where PS and PE are predominantly oriented to the inner leaflet was only observed at Ca2+ concentrations greater than or equal to 10 mM (in the presence of 10 mM phosphate buffer) while fusion of lipid-symmetric erythrocyte membranes was established at greater than or equal to 1.5 mM Ca2+. The Ca2+ threshold of fusion of lipid-asymmetric red blood cells was significantly reduced (i) after exposure of PS to the outer layer but not after redistribution of PE alone, and (ii) upon incorporation of spin-labeled PS into the outer leaflet of red blood cells. Spin-labeled PE or PC did not affect fusion, suggesting that the serine headgroup is an important factor in calcium-phosphate-induced fusion.  相似文献   

15.
Membrane electropermeabilization relies on the transient permeabilization of the plasma membrane of cells submitted to electric pulses. This method is widely used in cell biology and medicine due to its efficiency to transfer molecules while limiting loss of cell viability. However, very little is known about the consequences of membrane electropermeabilization at the molecular and cellular levels. Progress in the knowledge of the involved mechanisms is a biophysical challenge. As a transient loss of membrane cohesion is associated with membrane permeabilization, our main objective was to detect and visualize at the single-cell level the incidence of phospholipid scrambling and changes in membrane order. We performed studies using fluorescence microscopy with C6-NBD-PC and FM1-43 to monitor phospholipid scrambling and membrane order of mammalian cells. Millisecond permeabilizing pulses induced membrane disorganization by increasing the translocation of phosphatidylcholines according to an ATP-independent process. The pulses induced the formation of long-lived permeant structures that were present during membrane resealing, but were not associated with phosphatidylcholine internalization. These pulses resulted in a rapid phospholipid flip/flop within less than 1 s and were exclusively restricted to the regions of the permeabilized membrane. Under such electrical conditions, phosphatidylserine externalization was not detected. Moreover, this electrically-mediated membrane disorganization was not correlated with loss of cell viability. Our results could support the existence of direct interactions between the movement of membrane zwitterionic phospholipids and the electric field.  相似文献   

16.
Rhnull human erythrocytes lack the antigens of the Rhesus blood group system, have an abnormal shape and an increased osmotic fragility, and are associated with mild chronic haemolytic anaemia. Studies with phospholipase A2 and sphingomyelinase C show that the asymmetric distribution of phosphatidylethanolamine (PtdEtn) in the membrane of these cells differs from that found in control cells. The amount of PtdEtn which can be hydrolysed by phospholipase A2 in the presence of sphingomyelinase C in intact Rhnull cells is twice as high as that in normal erythrocytes. In intact Rhnull cells all of the phosphatidylcholine (PtdCho) present in the membrane can be readily exchanged with a PtdCho-specific exchange protein, whereas in control cells 75% is readily exchanged and 25% at a much lower rate. This indicates that PtdCho experiences a relatively fast transbilayer movement in the Rhnull cells. The observation that the loss of two membrane polypeptides in the Rhnull cells leads to abnormal shape, increased osmotic fragility, abnormal PtdEtn distribution and enhanced transbilayer mobility of PtdCho strongly suggests that one or both polypeptides are essential for the maintenance of a proper membrane-membrane skeleton interaction.  相似文献   

17.
18.
Abtract Raman spectra were used to study the effects of the phosphorylated amino acids on the erythrocyte membrane. It was found that some phosphorylated amino acids might cause the polar part of the membrane phospholipid to become less ordered, the packing of the chains to become looser, and the end of the chain more ordered. Some of the phosphoamino acids cause the phospholipids' all-trans/gauche ratio to increase and some cause them to decrease. This could give some clues to the function of phosphorylated proteins in the biological process concerning the change in membrane mobility.  相似文献   

19.
The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of (1)O(2) by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While (1) O(2) is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of (1)O(2) we have established a new cytometric method that allows the stage specific quantification of (1)O(2). Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200-600 pixels for rings, 700-1,200 pixels for trophozoites and 1,400-2,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous (1)O(2) of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that (1)O(2) derives predominantly from the digestion of hemoglobin.  相似文献   

20.
Crosslinking of membrane skeletal proteins such as spectrin by oxidation of their SH-groups can be provoked by treatment of intact erythrocytes with diamide. Shortly after exposure of human erythrocytes to diamide and despite the transverse destabilization of the lipid bilayer that was observed in these cells (Franck, P.F.H., Op den Kamp, J.A.F., Roelofsen, B. and Van Deenen, L.L.M. (1986) Biochim. Biophys. Acta 857, 127-130), no abnormalities could be detected regarding the asymmetric distribution of the phospholipids when probed by either the prothrombinase assay or brief exposure of the cells to a modified phospholipase A2 with enhanced membrane penetrating capacity. This asymmetry appeared to undergo dramatic changes however, when the ATP content of the cytosol had decreased to less than 10% of its original level during prolonged incubation of the treated cells. These observations indicate that the initial maintenance of phospholipid asymmetry in diamide-treated erythrocytes can be solely ascribed to the action of the ATP-dependent aminophospholipid translocase. This view is supported by experiments involving radiolabeled phospholipids of which trace amounts had been inserted into the outer membrane leaflet of diamide-treated red cells and which still showed a preferential translocation of both aminophospholipids in favour of the inner monolayer, be it that the efficiency of the translocase was found to be impaired when compared to control cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号