首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydroleucodine is a sesquiterpene lactone recently isolated from aerial parts of a medicinal herb, Artemisia douglasiana Besser. We have previously shown that 25 and 100 microM dehydroleucodine slowed down onion root growth by 30 and 70%, respectively, affecting neither cell viability nor cell elongation. In the present study we analyze the effect of dehydroleucodine on cell cycle phases in onion (Allium cepa L.) root meristematic cells synchronized with caffeine or caffeine and hydroxyurea. Synchronized root cells treated with 100 and 200 microM dehydroleucodine present an interphase lengthening of 5.2 h and 8.2 h, respectively. The S-phase length, estimated by [3H]thymidine incorporation assay, was 6 h for both control roots and roots that had been immersed in dehydroleucodine. The peak of [3H]leucine incorporation was observed 6 h after release from synchronization in controls and in dehydroleucodine-treated roots, indicating that protein synthesis in G2 was not affected. Thus, these results show that dose-dependently dehydroleucodine selectively induces a transient arrest of meristematic cell in G2 and that dehydroleucodine can be used experimentally as a cell cycle suppressor.  相似文献   

2.
Phytotoxicity of parthenin, a sesquiterpene lactone, was evaluated against four weedy species (Amaranthus viridis, Cassia occidentalis, Echinochloa crus-galli, and Phalaris minor) through a series of experiments conducted under laboratory or greenhouse conditions to assess its herbicidal potential. Under laboratory conditions, parthenin (0.5-2 mM) severely reduced seedling growth (root and shoot) and dry weight of test weeds. However, the effect was greater on root growth. Parthenin (1 mM) suppressed the mitotic activity in the onion root tip cells that could possibly be responsible for the reduction in seedling growth. Both pre- and post-emergent application of parthenin caused a significant loss of chlorophyll pigments and affected photosynthesis. Parthenin ( > or =1 mM) caused an excessive electrolyte leakage in the plant tissues which was light-dependent. The root inhibition was associated with swelling and blackening of the root tip, shriveling and damage to the epidermal tissue and non-formation of root hairs. The study concludes that parthenin possesses weed-suppressing potential (both pre- and post-).  相似文献   

3.
Aluminum-induced cell death in root-tip cells of barley   总被引:1,自引:0,他引:1  
Aluminum-induced cell death was investigated in root-tip cells of barley (Hordeum vulgare). The growth of roots in 0.1-50 mM Al treatments was inhibited after 8 h treatments, and could not be recovered after 24 h recovery culture without Al. Viable detection with fluorescein diacetate-propidium iodide (FDA-PI) staining shows that most of the root-tip cells have lost viability. These results suggest that the irreversible inhibition of root growth after 8 h Al treatments or 24 h recovery culture is mainly caused by cell death. DNA ladders occurred in root tips only after 8 h Al treatments (0.1-1.0 mM), but no apoptotic bodies in root tips were observed. Thus, the cell death caused by Al stress is likely to be Al-induced programmed cell death (PCD). The reactive oxygen species (ROS) in root-tip cells measured by ultraweak luminescence indicated that the oxidation status in root-tip cells basically ceased after exposure to 10-50 mM Al for 24 h, but was very violent in the root-tip cells treated with 0.1-1.0 mM for 24 h. Exposure to 0.1-1.0 mM Al for 3-12 h led to ROS burst. Therefore, our results suggest that 0.1-1.0 mM Al treatments for 8 h induce cell death (Al-induced PCD) possibly via a ROS-activated signal transduction pathway, whereas 10-50 mM Al treatments may cause necrosis in the root-tip cells. These results have an important role for further studies on the mechanism of Al toxicity in plants.  相似文献   

4.
Cadmium-Induced Inhibition of Apoplastic Ascorbate Oxidase in Barley Roots   总被引:3,自引:0,他引:3  
The effect of excess cadmium (Cd: 0.0, 0.25, 0.5, 1.0 and 2.0 mM) on growth and ascorbate oxidase (AO) activity was investigated in barley (Hordeum vulgare L. cv. Jubilant) roots. The study employed a filter-paper technique to germinate and grow the germinating seeds following imbibition with respective Cd treatments for 4 h at 25 °C in darkness. Cd was required at 1.0 mM to affect 50% root growth inhibition 72 h after the treatment. This Cd-induced root growth inhibition was accompanied by a corresponding loss of plasma membrane integrity in root cells as evaluated by Evans blue uptake. Excess Cd (1.0 and 2.0 mM) significantly inhibited the AO activity in all the analysed fractions of barley roots such as extracellular, soluble, cell wall (CW)- and membrane-bound fractions. AO was localized in the apoplast, and its highest specific activity was detected in the CW II fraction obtained by extraction with 1.0 M NaCl from purified cell walls. The analysis of AO isozyme profile showed that besides the reduced activity of two anionic and two cationic isozymes, one cationic AO isozyme was activated during excess Cd treatment, which could be detected in cell wall fractions CW II, III and IV.  相似文献   

5.
In this study, the effects of benomyl, a systemic fungicide were investigated in the mitotic cell division in onion (Allium cepa) root tip cells during germination. For this aim, different concentrations (1, 2, 5, 10 and 20 mM) of benomyl solutions were used. All the concentrations used caused several abnormalities in mitotic cell divisions and the mitotic frequency in the onion root tip cells decreased as the concentration of benomyl solution increased. Based on our findings, it is reported that benomyl has some negative effects on mitotic divisions in onion root tip cells.  相似文献   

6.
The role played by lateral roots and root hairs in promoting plant anchorage, and specifically resistance to vertical uprooting forces has been determined experimentally. Two species were studied, Allium cepa (onion) which has a particularly simple root system and two mutants of Arabidopsis thaliana, one without root hairs (rhd 2-1) and another with reduced lateral root branching (axr 4-2). Maximum strength of individual onion roots within a plant increased with plant age. In uprooting tests on onion seedlings, resistance to uprooting could be resolved into a series of events associated with the breakage of individual roots. Peak pulling resistance was explained in a regression model by a combination of a measure of plant size and the extent to which the uprooting resistance of individual roots was additive. This additive effect is termed root co-operation. A simple model is presented to demonstrate the role played by root co-operation in uprooting resistance. In similar uprooting tests on Arabidopsis thaliana, the mutant axr 4-2, with very restricted lateral development, showed a 14% reduction in peak pulling resistance when compared with the wild-type plants of similar shoot dry weight. The uprooting force trace of axr 4-2 was different to that of the wild type, and the main axis was a more significant contributor to anchorage than in the wild type. By contrast, the root hair-deficient mutant rhd 2-1 showed no difference in peak pulling resistance compared with the wild type, suggesting that root hairs do not normally play a role in uprooting resistance. The results show that lateral roots play an important role in anchorage, and that co-operation between roots may be the most significant factor.  相似文献   

7.
Wan X  Zwiazek JJ 《Plant physiology》1999,121(3):939-946
HgCl(2) (0.1 mM) reduced pressure-induced water flux and root hydraulic conductivity in the roots of 1-year-old aspen (Populus tremuloides Michx.) seedlings by about 50%. The inhibition was reversed with 50 mM mercaptoethanol. Mercurial treatment reduced the activation energy of water transport in the roots from 10.82 +/- 0.700 kcal mol(-1) to 6.67 +/- 0.193 kcal mol(-1) when measured over the 4 degrees C to 25 degrees C temperature range. An increase in rhodamine B concentration in the xylem sap of mercury-treated roots suggested a decrease in the symplastic transport of water. However, the apoplastic pathway in both control and mercury-treated roots constituted only a small fraction of the total root water transport. Electrical conductivity and osmotic potentials of the expressed xylem sap suggested that 0.1 mM HgCl(2) and temperature changes over the 4 degrees C to 25 degrees C range did not induce cell membrane leakage. The 0.1 mM HgCl(2) solution applied as a root drench severely reduced stomatal conductance in intact plants, and this reduction was partly reversed by 50 mM mercaptoethanol. In excised shoots, 0.1 mM HgCl(2) did not affect stomatal conductance, suggesting that the signal that triggered stomatal closure originated in the roots. We suggest that mercury-sensitive processes in aspen roots play a significant role in regulating plant water balance by their effects on root hydraulic conductivity.  相似文献   

8.
The influence of lithium ions (LiCl in concentrations of 0.5, 1.0, and 5.0 mM) on the growth processes of roots of 2-5-day old wheat seedlings was studied. It was shown that the inhibition of the root growth increased with the increase of LiCl concentration and seedling age. The membrane potential of root cells was lower and the loss of K+ by cells was greater when roots were treated with 5 mM LiCl, compared with the control. The growth inhibition by lithium was decreased by univalent ions, partially by potassium at the beginning of growth and completely by sodium throughout the experimental period. The divalent ions calcium and barium decreased the Li(+)-induced inhibition of root growth by reducing the rate of lithium uptake by cells. Myoinositol, controlled by Li-sensitive inositolmonophosphatase, reversed the Li-induced root growth inhibition in 2-day old seedlings, but did not prevent the inhibition during subsequent elongation. It can be concluded that lithium effects on wheat root growth are mediated by a partial blockage of signal transduction for proliferation (via the phosphoinositide cycle), because of calcium deficiency and caused by modification of ion transporting systems of the plasmalemma, and by disturbance of ion gradients, primarily H+ and K+.  相似文献   

9.
The effect of free cadaverine (Cad) on its conjugates formation was analyzed in roots of the common ice plants (Mesembryanthemum crystallinum L.). It was found for the first time that Cad could induce oxidative burst in the roots of adult plants, as was evident from the sharp decrease in the content of Cad soluble or insoluble conjugates. This unusual effect was associated with the increased oxidative degradation of exogenous Cad (1mM, 1.5h) and intense H(2)O(2) production in the root cells of adult plants. Root treatment of both juvenile and adult plants with H(2)O(2) (1mM, 1.5h) reduced the content of soluble Cad conjugates and increased the content of their components, free Cad and phenols. We also found that one of the possible reasons of the negative effect of exogenous diamine on the formation of conjugated forms in adult roots was alkalization of the root apoplast at Cad addition to nutrient medium and the unusual O(2)(-) synthase function as a pH-dependent guaiacol peroxidase in the presence of a high content of H(2)O(2). This was confirmed by the data on the accumulation of O(2)(-) and enhanced superoxide dismutase activity in adult roots under treatment with Cad. It is possible that the accumulation of O(2)(-) together with H(2)O(2) was also responsible for oxidative burst, which induced a decrease in the content of Cad conjugates in adult roots of the common ice plants.  相似文献   

10.
The upper part of a nodulated soybean root hydroponically cultured in a glass bottle was monitored using a computer microscope under controlled environmental conditions, and the diameter of individual nodules was measured from 10-24 d after planting. The diameter of a root nodule attached to the primary root increased from 1 mm to 6 mm for 2 weeks under nitrogen-free conditions. The increase in diameter of the nodules was almost completely stopped after 1 d of supplying 5 mM nitrate, and was due to the cessation of nodule cell expansion. However, nodule growth quickly returned to the normal growth rate following withdrawal of nitrate from the solution. The reversible depression of nodule growth by nitrate was similar to the restriction of photoassimilate supply by continuous dark treatment for 2 d followed by normal light/dark conditions. In addition, the inhibitory effect of nitrate was partially alleviated by the addition of 3% (w/v) sucrose to the medium. Plant leaves were exposed to (11)C or (14)C-labelled carbon dioxide to investigate the effects of 5 mM nitrate on the translocation and distribution of photosynthates to nodules and roots. Supplying 5 mM nitrate stimulated the translocation rate and the distribution of labelled C in nitrate-fed parts of the roots. However, the (14)C partitioning to nodules decreased from 9% to 4% of total (14)C under conditions of 5 mM nitrate supply. These results indicate that the decrease in photoassimilate supply to nodules may be involved in the quick and reversible nitrate inhibition of soybean nodule growth.  相似文献   

11.
Root growth responses to lead in young maize seedlings   总被引:5,自引:0,他引:5  
Obroucheva  N.V.  Bystrova  E.I.  Ivanov  V.B.  Antipova  O.V.  Seregin  I.V. 《Plant and Soil》1998,200(1):55-61
This work was undertaken to follow the appearance and development of symptoms of lead toxicity in growing roots of seedlings. The effects of lead nitrate (10-2–105 M) were studied on the roots of maize (Zea mays) seedlings, cvs. Diamant and Sterling. The roots were grown on filter paper either on glass in trays or in large Petri dishes. The following characteristics of root growth were studied: seed germination, length of primary and seminal roots, number of seminal and lateral roots, length of branching zone, length of meristem and fully-elongated cells and the number of fully-elongated cells along the daily length increment. 10-2 M lead nitrate exerted a clear toxic effect on root elongation just after radicle emergence; its influence on shoot growth was weak. However 10-2 M Pb solution did not affect either radicle emergence itself or seminal root emergence, which can be explained by the impermeability of seed testa to lead salt. The inhibitory effect of 10-3 M lead nitrate appeared a day later and was not as toxic: the growth of primary and seminal roots proceeded at lower rate due to a partial inhibition of cell division and cell elongation in them. 10-3 M lead nitrate modified the root system morphology: it exerted no effect on the emergence of lateral roots and their number, but induced a more compact distribution of lateral roots along a shorter branching zone due to a reduced length of mature cells in the primary root. As a result of the more prominent inhibition of primary root growth, a shorter branching zone with more compactly located lateral roots occupied a position much closer to the root tip than in roots grown without the influence of lead.  相似文献   

12.
When two plants interact, changes in plant growth are usually related to variations in root distribution and phosphorus (P) levels. However, root distributions and root tendencies are difficult to study because root systems grow beneath the soil surface. In this study, a transparent root box was used to observe interactions between root systems in situ, and the relation between tomato growth and root proliferation at different depths and distance from the rows at no P added and 120?mg kg-1 P added levels were also tested. We found that tomato shoot and total biomass increased and roots grew deeper when companion cropped with potato onion under both P levels. Moreover, tomato roots tended to grow away from the potato onion roots. Our results suggest that a deeper and more evasive root distribution may be related to the increased plant growth of tomato when companion cropped with potato onion.  相似文献   

13.
Aluminum (Al) inhibits root growth in acidic soil, but the site of action of Al remains unclear. We investigated whether the rate of Al accumulation correlates to Al-indeced rapid root growth inhibition in rice seedlings (Oryza sativa L. cv. Youngnam). Growth of roots was significantly inhibited by 100 μM AICI3, as early as 1 h after the treatment. The inhibition of root growth was strongly dependent on Al concentration (l50 = 20 (μM) and Al-exposure time (l50 = 23 min at 25 μM Al) in a solution of 10 mM KCI and 1 mM CaCl2 buffered by 10 mM Mes/KOH (pH 4.5). Using ICPES, massive uptake of Al by roots was observed even at 15 min treatment of 25 μM Al. The kinetics of Al uptake by the roots closely corresponded to the inhibitory effects of Al on root growth. When the roots of seedlings were exposed to 50 (μM Al for 1 h, then sectioned and stained with hematoxylin, all cell types of the roots showed the presence of Al in the cytoplasm. These results indicate that Al was rapidly taken up into the root cells and thereby reduced root growth.  相似文献   

14.
The plant root system is highly sensitive to nutrient availability and distribution in the soil. For instance, root elongation is inhibited when grown in high nitrate concentrations. To decipher the mechanism underlying the nitrate-induced inhibition of root elongation, the involvement of the plant hormone auxin in nitrate-dependent root elongation of maize was investigated. Root growth, nitrogen and nitrate concentrations, and indole-3-acetic acid (IAA) concentrations in roots and in phloem exudates of maize grown under varying nitrate concentrations were analyzed. Total N and nitrate concentrations in shoots and roots increased and elongation of primary, seminal and crown roots were inhibited with increasing external nitrate from 0.05 to 5 mM. High nitrate-inhibited root growth resulted primarily from the reduced cell elongation and not from changes in meristem length. IAA concentrations in phloem exudates reduced with higher nitrate supply. Inhibition of root growth by high nitrate was closely related to the reduction of IAA levels in roots, especially in the sections close to root tips. Exogenous NAA and IAA restored primary root growth in high nitrate concentrations. It is concluded that the inhibitory effect of high nitrate concentrations on root growth may be partly attributed to the decrease in auxin concentrations of roots.  相似文献   

15.
A study was undertaken to explore the effect of l-DOPA (l-3,4-dihydroxyphenylalanine) on the rooting potential of hypocotyl cuttings of mung bean (Phaseolus aureus Roxb. var. SML-32) and related biochemical changes at the post-expression phase. At lower concentrations of (0.0001–0.1 mM) l-DOPA, there was no change in rooting potential, though the average number of roots per cutting and root length were significantly decreased (except at 0.0001 mM). However, at 1.0 mM concentration, a 50% inhibition in rooting potential was noticed and the root number and length were severely reduced. In contrast, at 2.5 mM l-DOPA, none of the hypocotyl cutting rooted. The decrease in rooting potential was associated with a significant effect on the biochemical changes measured in terms of protein and carbohydrate metabolism and activity of peroxidases. In the l-DOPA treated hypocotyl cuttings, there was a significant reduction in the protein and carbohydrate content, whereas activities of associated enzymes proteases and amylases decreased, particularly at higher treatment concentration (>1.0 mM). It indicated negative effect of l-DOPA on these two important metabolic processes. Likewise, activity of peroxidases also decreased in the l-DOPA treated hypocotyl mung bean cuttings thereby indicating its role in suppressing rhizogenesis as the enzyme is involved in lignification process during cell division. l-DOPA suppressed mitotic activity in the root tip cells of onion indicating thereby its interference with the cell division, which is required for the formation of new meristematic tissue during rhizogenesis. Based on the obtained results, it is concluded that l-DOPA interferes with the various biochemical processes in the mung bean hypocotyl cuttings thereby affecting their rooting potential.  相似文献   

16.
Relationships between cell division and inositol cycle modulation caused by different effectors in roots of Pisum sativum were studied. Stimulation of the inositol cycle by myoinositol increased the mitotic index of meristematic cells and root length, while the inhibition of the cycle with Li+ and a heavy metal Gd3+ considerably decreased mitotic activity and growth. Exposure of roots to 10 mM CaCl2 and 15 mM myoinositol resulted in the accumulation of chromosome aberrations. Changes in the activity of inositol cycle are assumed to be involved in the root growth control.  相似文献   

17.
In order to characterise the possible mechanisms involved in Al toxicity some functional characteristics were analysed in young barley (Hordeum vulgare L.) seedlings cultivated between moistened filter paper. Transfer of germinated barley seeds into hydroponic culture system caused significant stress, which was manifested by root-growth inhibition and elevated Evans blue uptake of root tips. Hydroponics caused stress unabled the analysis of Al-induced stress in the young barley roots during the first day of cultivation. Several (3–4) days are required for adaptation of barley seedlings to hydroponics in spite of strong aeration of the medium. Using filter paper compared to cultivation in solution application of much higher Al concentrations were required to inhibit root growth. Al-induced root growth inhibition, Al uptake, damage of plasma-membrane (PM) permeability of root cells, as well as elevated oxalate oxidase - OxO (EC 1.2.3.4) activity were significantly correlated. While 1 mM Al concentration had no effect on barley roots growing on filter paper, 5 to 100 mM Al concentration inhibited root growth, enhanced cell death and induced oxalate oxidase activity with increasing intensity. The time course analysis of OxO gene expression and OxO activity showed that 10 mM Al increased OxO activity as soon as 3 h after exposure of roots to Al reaching its maximum at about 18 h after Al application. These results indicate that expression of OxO is activated very early after exposure of barley to Al, suggesting its role in oxidative stress and subsequent cell death caused by Al toxicity in plants.  相似文献   

18.
The Mode of Action of Maleic Hydrazide: Inhibition of Growth   总被引:1,自引:0,他引:1  
Maleic hydrazide (MH) inhibits corn root elongation through an effect on cell division apparently without inhibiting cell enlargement. The decrease in the rate of elongation was apparent only after a considerable lag, over 14 hours, even with a concentration as high as 5 mM. MH (1 mM) did not inhibit His growth of roots from corn seeds given very large doses of γ-irradiation or excised corn root segments including the elongation Zone or the cell enlargement induced by IAA in corn coleoptile sections. Many compounds including purines, pyrimidines, nucleosides. cysteine, pyridoxal, pyruvate. kinetin and CoCl2, many of which had previously been reported to alleviate MH inhibition in other tissues, were tested for their ability to prevent the inhibition of corn root elongation by MH, but none were effective. These data do not support the theory that MH acts by inhibiting the synthesis of or competing with some simple metabolite or hormone. Whatever its mechanism of action the failure of MH to inhibit cell enlargement in most systems indicates that it is fairly selective.  相似文献   

19.
Summary 3-Indolylacetic acid (IAA) increased the length of the epidermis cells of onion roots during the initial stage of root growth, when cell length has not yet reached its maximum value, by up to 50% (10–11 M), while in the later, steady-state or dynamic equilibrium stage no promotive effects were present. It is suggested that the lesser elongation capacity of the cells at the onset of root growth is related to a deficiency in auxin while the steady-state phase is characterized by hormonal balance.  相似文献   

20.
Elongation of onion (Allium cepa L.) roots was highly stimulated by ascorbate (ASC) and its natural precursor I-galactone-[gamma]-lactone (GL). When incubation media were supplemented with lycorine (Lyc), an inhibitor of the ASC biosynthesis, root growth was negligible even in the presence of ASC or GL. ASC completely inhibited in vitro guaiacol peroxidase activities that were isolated from both the apoplast and the cell wall. However, ferulic-acid-dependent peroxidase from the cell wall was partially inhibited by ASC, whereas ferulic acid peroxidase activity from the apoplastic fluid was completely inhibited by ASC as long as ASC was present in the assay medium. ASC content in cells was increased by preincubations with ASC or GL, whereas Lyc reduced it. On the other hand, ASC or GL treatments decreased both apoplast and cell-wall-bound peroxidase activities, whereas Lyc had a slight stimulating effect. These results are discussed on the basis of a possible control of root elongation by ASC via its action on peroxidases that are involved in the regulation of cell-wall extensibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号