首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor irreversibly activated by extracellular proteases. Activated PAR2 couples to multiple heterotrimeric G-protein subtypes including Gαq, Gαi, and Gα12/13. Most activated G protein-coupled receptors are rapidly desensitized and internalized following phosphorylation and β-arrestin binding. However, the role of phosphorylation in regulation of PAR2 signaling and trafficking is not known. To investigate the function of phosphorylation, we generated a PAR2 mutant in which all serines and threonines in the C-tail were converted to alanines and designated it PAR2 0P. In mammalian cells, the addition of agonist induced a rapid and robust increase in phosphorylation of wild-type PAR2 but not the 0P mutant, suggesting that the major sites of phosphorylation occur within the C-tail domain. Moreover, desensitization of PAR2 0P signaling was markedly impaired compared with the wild-type receptor. Wild-type phosphorylated PAR2 internalized through a canonical dynamin, clathrin- and β-arrestin-dependent pathway. Strikingly, PAR2 0P mutant internalization proceeded through a dynamin-dependent but clathrin- and β-arrestin-independent pathway in both a constitutive and agonist-dependent manner. Collectively, our studies show that PAR2 phosphorylation is essential for β-arrestin binding and uncoupling from heterotrimeric G-protein signaling and that the presence of serine and threonine residues in the PAR2 C-tail hinder constitutive internalization through a non-canonical pathway. Thus, our studies reveal a novel function for phosphorylation that differentially regulates PAR2 desensitization and endocytic trafficking.  相似文献   

2.
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.  相似文献   

3.
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.  相似文献   

4.
The guanine deaminase cypin (cytosolic PSD-95 interactor) binds to PSD-95 (postsynaptic density protein 95) and regulates dendrite branching by promoting microtubule polymerization. Here, we identify a novel short isoform of cypin, termed cypinS, which is expressed in mouse and human, but not rat, tissues. Cypin and cypinS mRNA and protein levels peak at P7 and P14 in the mouse brain, suggesting a role for these isoforms during development. Interestingly, although cypinS lacks guanine deaminase activity, overexpression of cypinS increases dendrite branching. This increase occurs further away from soma than do increases resulting from overexpression of cypin. In contrast, overexpression of cypin, but not cypinS, decreases dendritic spine density and maturity. This suggests that changes to spines, but not to dendrites, may be dependent on guanine deaminase activity. Furthermore, overexpression of either cypin or cypinS increases miniature excitatory postsynaptic current (mEPSC) frequency, pointing to a presynaptic role for both isoforms. Interestingly, overexpression of cypinS results in a significantly greater increase in frequency than does overexpression of cypin. Thus, cypin and cypinS play distinct roles in neuronal development.  相似文献   

5.
G Protein Activation Stimulates Phospholipase D Signaling in Plants   总被引:7,自引:2,他引:7       下载免费PDF全文
We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than water as a transphosphatidylation substrate. The product was a phosphatidyl alcohol, which, in contrast to the normal product phosphatidic acid, is a specific measure of PLD activity. When 32P-labeled cells were treated with 0.1% n-butanol, 32P-phosphatidyl butanol (32P-PtdBut) was formed in a time-dependent manner. In cells treated with any of the three G protein activators, the production of 32P-PtdBut was increased in a dose-dependent manner. The G protein involved was pertussis toxin insensitive. Ethanol could activate PLD but was itself consumed by PLD as transphosphatidylation substrate. In contrast, secondary alcohols (e.g., sec-butyl alcohol) activated PLD but did not function as substrate, whereas tertiary alcohols did neither. Although most of the experiments were performed with the green alga Chlamydomonas eugametos, the relevance for higher plants was demonstrated by showing that PLD in carnation petals could also be activated by mastoparan. The results indicate that PLD activation must be considered as a potential signal transduction mechanism in plants, just as in animals.  相似文献   

6.
Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar1-Ile4-Ile8]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling.  相似文献   

7.
Activation of heterotrimeric G proteins is generally believed to induce dissociation of Gα and Gβγ subunits, which are then free to bind to and change the catalytic activity of a variety of intracellular enzymes. We have previously found that in cells, Gαq subunits remain complexed with its major effector, phospholipase Cβ1, through the activation cycle. To determine whether this behavior may be operative in other systems, we carried out Förster resonance energy transfer studies and found that eYFP-Gαi and eCFP-Gβγ remain associated after stimulation in HEK293 cells. We also found that the level of Forster resonance energy transfer between Alexa546-phospholipase Cβ2 and eGFP-Gβγ is significant and unchanged upon activation in HEK293 cells, thus showing that these proteins can localize into stable signaling complexes. To understand the basis for this stabilization, we carried out in vitro studies using a series of single-Cys mutants labeled with fluorescence tags and monitored their interaction with Gβγ subunits and changes in their fluorescence properties and accessibility upon activation and Gβγ binding. Our studies suggest a significant change in the orientation between G protein subunits upon activation that allows the G proteins to remain complexed while activating effectors.  相似文献   

8.
Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic–AMP–protein kinase A–dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1–deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes.  相似文献   

9.
10.
Neutrophil proteinases released at sites of inflammation can affect tissue function by either activating or disarming signal transduction mediated by proteinase-activated receptors (PARs). Because PAR1 is expressed at sites where abundant neutrophil infiltration occurs, we hypothesized that neutrophil-derived enzymes might also regulate PAR1 signaling. We report here that both neutrophil elastase and proteinase-3 cleave the human PAR1 N terminus at sites distinct from the thrombin cleavage site. This cleavage results in a disarming of thrombin-activated calcium signaling through PAR1. However, the distinct non-canonical tethered ligands unmasked by neutrophil elastase and proteinase-3, as well as synthetic peptides with sequences derived from these novel exposed tethered ligands, selectively stimulated PAR1-mediated mitogen-activated protein kinase activation. This signaling was blocked by pertussis toxin, implicating a Gαi-triggered signal pathway. We conclude that neutrophil proteinases trigger biased PAR1 signaling and we describe a novel set of tethered ligands that are distinct from the classical tethered ligand revealed by thrombin. We further demonstrate the function of this biased signaling in regulating endothelial cell barrier integrity.  相似文献   

11.
Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.Human cytomegalovirus (HCMV) (human herpesvirus 5 [HHV-5]), the prototypical betaherpesvirus, is ubiquitous in humans and establishes a persistent infection in the host (19). HCMV also reinfects healthy seropositive individuals, suggesting another mechanism for maintaining persistence in a population (9). Intrauterine transmission and HCMV infection of the developing fetus constitute a leading viral cause of birth defects (32). HCMV is also a leading cause of opportunistic infections in immunocompromised patients, including transplant recipients and patients with AIDS (10, 20). HCMV infection has also been implicated as a cofactor in such diverse diseases as atherosclerosis and cancer (8, 17, 33, 66).HCMV replicates its genome in the nucleus, and acquisition of the final tegument and envelope is thought to occur in the cytoplasm of infected cells (73, 77). Envelopment of HCMV has been reported to occur by budding into cytoplasmic vacuoles that are composed of HCMV glycoproteins required for the assembly of infectious virions (37). The fully mature virus is released from the cell through either exocytosis or, possibly, lysis of the infected cells (56). The nucleic acid-containing capsid is embedded in a proteinaceous tegument layer that occupies the space between the nucleocapsid and the envelope. The tegument contains approximately 40% of the virion protein mass and approximately 20 to 25 known virion proteins, most of which are phosphorylated (40, 44). The assembly pathway and protein interactions required for formation of the tegument layer and the role of individual tegument proteins in the replication and assembly of infectious HCMV remain poorly understood. Deletion of viral genes encoding some tegument proteins results in varying levels of impairment in virus production (11-13, 35, 43, 45, 53, 68). Some tegument proteins, such as pp28 (pUL99) and ppUL25, are expressed only in the cytoplasm of infected cells during HCMV replication, whereas others, such as ppUL53 and pp65 (pUL83), are expressed in the nuclei of cells early in infection but are localized predominantly in the cytoplasm late in infection (68). Others, such as the tegument protein ppUL69, are expressed only in the nuclei of infected cells. Finally, the intracellular localization of other tegument proteins, such as pp150 (pUL32), is less well defined in that both nuclear and cytoplasmic localizations have been described (34, 68).HCMV pp150 (basic phosphoprotein [BPP], pUL32) is the 1,048-amino-acid product of the UL32 gene of HCMV and an abundant constituent of the HCMV virion. Homologues of pp150 are found in other betaherpesviruses, including chimpanzee CMV, rat CMV, mouse CMV, HHV-6, and HHV-7, but not in alpha- or gammaherpesviruses (2). It is expressed late in HCMV infection (15, 68). It comprises 9.1% of infectious virion mass and 2% of the mass of dense bodies, suggesting that it is preferentially incorporated into virions (87). It has an estimated molecular mass of 113 kDa and is posttranslationally modified by phosphorylation and glycosylation, resulting in a molecular mass of 150 kDa in purified virus preparations analyzed by SDS-PAGE (41, 42, 65). pp150 has been classified as a tegument protein based on its presence in virion preparation, noninfectious enveloped particles, and cytoplasmic nucleocapsids but not in immature nuclear capsids (27, 28, 40). It has been suggested that pp150 contacts the capsids through the distal end of the capsomeres or through the triplex subunits that interlink them (16, 86). It has been reported to bind HCMV capsids in vitro through its amino one-third (6). We have also noted association of pp150 with the virion capsid by cryo-immunoelectron microscopy (W. Britt and H. Zhou, UCLA, Los Angeles, CA, unpublished findings). In primary human foreskin fibroblast (HFF) cells infected with HCMV, pp150 accumulates in a juxtanuclear structure that is termed the assembly compartment (AC), which colocalizes with markers of the distal secretory pathway and with other tegument proteins, including pp28 and pp65 and envelope glycoproteins gB, gH, and gM/gN (68). The virus-induced AC appears to overlap with microtubules emanating from the microtubule-organizing center (MTOC) and is proposed to be a cytoplasmic site of virion assembly (37, 68).The function of pp150 is unknown, although its close association with the nucleocapsid suggests potential involvement in nuclear targeting during entry and in nuclear targeting of the encapsidated viral DNA, capsid tegumentation, and/or envelopment late in infection. It is essential for production of infectious virus, since the deletion of the UL32 open reading frame (ORF) leads to loss of virus replication and has been reported to be important in cytoplasmic maturation of HCMV, especially in viral egress (2, 22, 84, 91, 92). In cells infected with ΔUL32 virus, which lacks pp150, fewer virus particles accumulated in the cytoplasm, although nuclear steps in virus assembly were not affected (84). It was also observed that in the absence of pp150, nucleocapsids were present in the viral assembly compartment but failed to proceed further to vesicle transport-associated release (84). These observations, together with pp150 abundance in the virion, suggest a primary contribution for this structural protein in the morphogenesis and/or cytoplasmic transport of progeny virion particles to sites of virion envelopment.Since pp150 has no predicted intracellular trafficking signals, its localization to the AC in virus-infected cells has been postulated to be dependent on interactions with cellular and/or viral proteins. Using yeast two-hybrid (Y2H) screening experiments we identified the cellular protein Bicaudal D1 (BicD1) as an interacting cellular protein. Bicaudal D was originally defined as a Drosophila protein that is involved in establishing the asymmetric cytoplasm in the developing oocyte (82, 89). Two homologues of Bicaudal D, BicD1 and BicD2, have been reported in humans, and these proteins have been reported to be involved in dynein-mediated microtubule transport as well as in COPI-independent Golgi-endoplasmic reticulum (ER) transport (38, 39, 55). Microtubule-dependent transport is an energy-dependent active transport system that includes both positive-end (directed away from the MTOC) and negative-end (directed toward the MTOC) transport. The direction of transport depends on cargo interactions with the molecular motors directing this transport, with dynein being associated with negative-end transport and kinesin with positive-end transport. BicD1 colocalizes with Rab6a in the trans-Golgi network and on cytoplasmic vesicles that associate with Golgi membranes in a Rab6-dependent manner secondary to a Rab6 binding domain at the C terminus of BicD1, suggesting an important role for BicD1 as an adaptor for dynein-dependent transport in the cell (55). In addition to having a role in the Golgi-ER trafficking, BicD1 has been shown to regulate anchoring of microtubules to the centrosome, as BICD1/2 knockdown induced microtubule unfocusing, with microtubules no longer appearing to radiate from the centrosome (26). BicD1 binds to its cargo via its C-terminal domain and to the dynein motor via its N-terminal domain (38). In this study we demonstrated that pp150 and BicD1 interact and that this interaction was required for localization of pp150 to the AC in virus-infected cells. In addition, we demonstrated that inhibition of BicD1 expression by short hairpin RNA (shRNA) led to a reduction in the yield of infectious virus. Finally, we demonstrated that formation of the AC and the assembly of infectious virions were dynein dependent, suggesting a critical role in microtubules in the production of infectious HCMV. Together, these results argue that HCMV replication is dependent on efficient localization of pp150 to the AC through its interaction with BicD1 and that pp150 localization to the AC is dynein dependent.  相似文献   

12.
13.
Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the Cerebral Cavernous Malformation (CCM) disease, which is characterized by serious alterations of brain capillary architecture. The KRIT1 protein contains multiple interaction domains and motifs, suggesting that it might act as a scaffold for the assembly of functional protein complexes involved in signaling networks. In previous work, we defined structure-function relationships underlying KRIT1 intramolecular and intermolecular interactions and nucleocytoplasmic shuttling, and found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. Here we report the identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. This interaction was discovered through yeast two-hybrid screening of a mouse embryo cDNA library, and confirmed by pull-down and co-immunoprecipitation assays of recombinant proteins, as well as by co-immunoprecipitation of endogenous proteins in human endothelial cells. Furthermore, using distinct KRIT1 isoforms and mutants, we defined the role of KRIT1 domains in the Nd1-L/KRIT1 interaction. Finally, functional assays showed that Nd1-L may contribute to the regulation of KRIT1 nucleocytoplasmic shuttling and cooperate with KRIT1 in modulating the expression levels of the antioxidant protein SOD2, opening a novel avenue for future mechanistic studies. The identification of Nd1-L as a novel KRIT1 interacting protein provides a novel piece of the molecular puzzle involving KRIT1 and suggests a potential functional cooperation in cellular responses to oxidative stress, thus expanding the framework of molecular complexes and mechanisms that may underlie the pathogenesis of CCM disease.  相似文献   

14.
15.
Small noncoding microRNAs have emerged as important regulators of cellular processes, but their role in pancreatic beta cells has only started to be elucidated. Loss of pancreatic beta cells is a key factor in the pathogenesis of diabetes, and we have demonstrated that beta cell expression of thioredoxin-interacting protein (TXNIP) is increased in diabetes and causes beta cell apoptosis, whereas TXNIP deficiency is protective against diabetes. Recently, we found that TXNIP also impairs beta cell function by inducing microRNA (miR)-204. Interestingly, using INS-1 beta cells and primary islets, we have now discovered that expression of another microRNA, miR-200, is induced by TXNIP and by diabetes. Furthermore, we found that miR-200 targeted and decreased Zeb1 (zinc finger E-box-binding homeobox 1) and promoted beta cell apoptosis as measured by cleaved caspase-3 levels, Bax/Bcl2 ratio, and TUNEL. In addition, Zeb1 knockdown mimicked the miR-200 effects on beta cell apoptosis, suggesting that Zeb1 plays an important role in mediating miR-200 effects. Moreover, miR-200 increased beta cell expression of the epithelial marker E-cadherin, consistent with inhibition of epithelial-mesenchymal transition, a process thought to be involved in beta cell expansion. Thus, we have identified a novel TXNIP/miR-200/Zeb1/E-cadherin signaling pathway that, for the first time, links miR-200 to beta cell apoptosis and diabetes and also beta cell TXNIP to epithelial-mesenchymal transition. In addition, our results shed new light on the regulation and function of miR-200 in beta cells and show that TXNIP-induced microRNAs control various processes of beta cell biology.  相似文献   

16.
Insulin stimulates glucose uptake through a highly organized and complex process that involves movement of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Previous studies in L6 skeletal muscle cells have shown that insulin-induced activation and assembly of insulin receptor substrate 1 (IRS1) and p85α the regulatory subunit of the Type 1A phosphatidylinositol-3-kinase (PI3K), within remodeled actin-rich membrane structures is critical for downstream signalling mediating the translocation of GLUT4. The mechanism for localization within actin cytoskeletal scaffolds is not known, as direct interaction of IRS1 or p85α with F-actin has not been demonstrated. Here we show that nexilin, a F-actin binding protein implicated in the pathogenesis of familial dilated cardiomyopathies, preferentially binds to IRS1 over IRS2 to influence glucose transport in skeletal muscle cells. Nexilin stably associates with IRS1 under basal conditions in L6 myotubes and this complex is disassembled by insulin. Exposure of L6 myotubes to Latrunculin B disrupts the spatial patterning of nexilin and its transient association with IRS1. Functional silencing of nexilin has no effect on insulin-stimulated IRS1 tyrosine phosphorylation, however it enhances recruitment of p85α to IRS1 resulting in increased PI-3, 4, 5-P3 formation, coincident with enhanced AKT activation and glucose uptake. By contrast, overexpression of nexilin inhibits transmission of IRS1 signals to AKT. Based on these findings we propose that nexilin may tether IRS1 to actin-rich structures under basal conditions, confining IRS1 signaling to specific subcellular locations in the cell. Insulin-elicited release of this constraint may enhance the efficiency of IRS1/PI3K interaction and PI-3, 4, 5-P3 production at localized sites. Moreover, the selective binding of nexilin to IRS1 and not IRS2 may contribute to the differential specificity of IRS isoforms in the modulation of GLUT4 trafficking in skeletal muscle cells.  相似文献   

17.
18.
G protein β subunits (Gβ) play essential roles in phototransduction as part of G protein βγ (Gβγ) and regulator of G protein signaling 9 (RGS9)-Gβ5 heterodimers. Both are obligate dimers that rely on the cytosolic chaperone CCT and its co-chaperone PhLP1 to form complexes from their nascent polypeptides. The importance of PhLP1 in the assembly process was recently demonstrated in vivo in a retinal rod-specific deletion of the Phlp1 gene. To test whether this is a general mechanism that also applies to other cell types, we disrupted the Phlp1 gene specifically in mouse cones and measured the effects on G protein expression and cone visual signal transduction. In PhLP1-deficient cones, expression of cone transducin (Gt2) and RGS9-Gβ5 subunits was dramatically reduced, resulting in a 27-fold decrease in sensitivity and a 38-fold delay in cone photoresponse recovery. These results demonstrate the essential role of PhLP1 in cone G protein complex formation. Our findings reveal a common mechanism of Gβγ and RGS9-Gβ5 assembly in rods and cones, highlighting the importance of PhLP1 and CCT-mediated Gβ complex formation in G protein signaling.  相似文献   

19.
20.
Transcytosis via caveolae is critical for maintaining vascular homeostasis by regulating the tissue delivery of macromolecules, hormones, and lipids. In the present study, we test the hypothesis that interactions between F-actin cross-linking protein filamin A and caveolin-1 facilitate the internalization and trafficking of caveolae. Small interfering RNA-mediated knockdown of filamin A, but not filamin B, reduced the uptake and transcytosis of albumin by ∼35 and 60%, respectively, without altering the actin cytoskeletal structure or cell–cell adherens junctions. Mobility of both intracellular caveolin-1–green fluorescent protein (GFP)-labeled vesicles measured by fluorescence recovery after photobleaching and membrane-associated vesicles measured by total internal reflection-fluorescence microscopy was decreased in cells with reduced filamin A expression. In addition, in melanoma cells that lack filamin A (M2 cells), the majority of caveolin-1-GFP was localized on the plasma membrane, whereas in cells in which filamin A expression was reconstituted (A7 cells and M2 cells transfected with filamin A-RFP), caveolin-1-GFP was concentrated in intracellular vesicles. Filamin A association with caveolin-1 in endothelial cells was confirmed by cofractionation of these proteins in density gradients, as well as by coimmunoprecipitation. Moreover, this interaction was enhanced by Src activation, associated with increased caveolin-1 phosphorylation, and blocked by Src inhibition. Taken together, these data suggest that filamin A association with caveolin-1 promotes caveolae-mediated transport by regulating vesicle internalization, clustering, and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号