首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.  相似文献   

2.
Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI) interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT) and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.  相似文献   

3.
The coronavirus membrane (M) protein is the key player in virion assembly. One of its functions is to mediate the incorporation of the spikes into the viral envelope. Heterotypic interactions between M and the spike (S) protein can be demonstrated by coimmunoprecipitation and by immunofluorescence colocalization, after coexpression of their genes in eukaryotic cells. Using these assays in a mutagenetic approach, we have mapped the domains in the M protein that are involved in complex formation between M and S. It appeared that the 25-residue luminally exposed amino-terminal domain of the M protein is not important for M-S interaction. A 15-residue deletion, the insertion of a His tag, and replacement of the ectodomain by that of another coronavirus M protein did not affect the ability of the M protein to associate with the S protein. However, complex formation was sensitive to changes in the transmembrane domains of this triple-spanning protein. Deletion of either the first two or the last two transmembrane domains, known not to affect the topology of the protein, led to a considerable decrease in complex formation, but association was not completely abrogated. Various effects of changes in the part of the M protein that is located at the cytoplasmic face of the membrane were observed. Deletions of the extreme carboxy-terminal tail appeared not to interfere with M-S complex formation. However, deletions in the amphipathic domain severely affected M-S interaction. Interestingly, changes in the amino-terminal and extreme carboxy-terminal domains of M, which did not disrupt the interaction with S, are known to be fatal to the ability of the protein to engage in virus particle formation (C. A. M. de Haan, L. Kuo, P. S. Masters, H. Vennema, and P. J. M. Rottier, J. Virol. 72:6838-6850, 1998). Apparently, the structural requirements of the M protein for virus particle assembly differ from the requirements for the formation of M-S complexes.  相似文献   

4.
5.
Unlike those of the S and the L envelope proteins, the functional role of the related M protein in the life cycle of the hepatitis B virus (HBV) is less understood. We now demonstrate that a single N glycan, specific for M, is required for efficient secretion of M empty envelope particles. Moreover, this glycan mediates specific association of M with the chaperone calnexin. Conversely, the N glycan, common to all three envelope proteins, is involved neither in calnexin binding nor in subviral particle release. As proper folding and trafficking of M need the assistance of the chaperone, the glycan-dependent association of M with calnexin may thus play a crucial role in the assembly of HBV. Beyond being modified by N glycosylation, M is modified by O glycosylation occurring within its amino acid sequence at positions 27 to 47. The O glycans, however, were found to be dispensable for secretion of M but may rather support viral infectivity. Surprisingly, nonglycosylated M localizes exclusively to the cytosol, either for degradation or for a yet-unknown function.  相似文献   

6.
The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway.  相似文献   

7.

Background

Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization.

Methodology/Principal Findings

As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI.

Conclusions/Significance

We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.  相似文献   

8.
HIV fusion and entry into CD4 T cells are mediated by two receptors, CD4 and CXCR4. This receptor requirement can be abrogated by pseudotyping the virion with the vesicular stomatitis virus glycoprotein (VSV-G) that mediates viral entry through endocytosis. The VSV-G-pseudotyped HIV is highly infectious for transformed cells, although the virus circumvents the viral receptors and the actin cortex. In HIV infection, gp120 binding to the receptors also transduces signals. Recently, we demonstrated a unique requirement for CXCR4 signaling in HIV latent infection of blood resting CD4 T cells. Thus, we performed parallel studies in which the VSV-G-pseudotyped HIV was used to infect both transformed and resting T cells in the absence of coreceptor signaling. Our results indicate that in transformed T cells, the VSV-G-pseudotyping results in lower viral DNA synthesis but a higher rate of nuclear migration. However, in resting CD4 T cells, only the HIV envelope-mediated entry, but not the VSV-G-mediated endocytosis, can lead to viral DNA synthesis and nuclear migration. The viral particles entering through the endocytotic pathway were destroyed within 1–2 days. These results indicate that the VSV-G-mediated endocytotic pathway, although active in transformed cells, is defective and is not a pathway that can establish HIV latent infection of primary resting T cells. Our results highlight the importance of the genuine HIV envelope and its signaling capacity in the latent infection of blood resting T cells. These results also call for caution on the endocytotic entry model of HIV-1, and on data interpretation where the VSV-G-pseudotyped HIV was used for identifying HIV restriction factors in resting T cells.  相似文献   

9.
To identify proteins that interact with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, we carried out coimmunoprecipitation analyses on detergent-solubilized rat forebrain membranes. Membranes were solubilized with Triton X-100, and immunoprecipitation was done using subunit-specific antibodies to GluR1, GluR2/3, and GluR4 attached to protein Aagarose. Proteins bound to the antibodies were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining and western blotting. With solubilization in low ionic strength buffer, several coimmunoprecipitating proteins, with Mr = 17,000-100,000, were identified in silver-stained gels. Western blots were then probed with antibodies to a series of candidate proteins that were chosen based on the molecular masses of the copurifying proteins. Two of these were identified as the molecular chaperones calnexin (90 kDa) and the immunoglobulin binding protein (BiP; 78 kDa). Immunoprecipitation with antibodies to calnexin and BiP demonstrated that glycosylated AMPA receptor subunits were associated. The relationship between AMPA receptors and calnexin and BiP was further studied with immunocytochemistry of the hippocampus. Both calnexin and BiP labeling was present not only in the cell body but also in dendrites of hippocampal pyramidal neurons, where double-label immunofluorescence also showed the presence of AMPA receptor subunits.  相似文献   

10.
Calnexin and calreticulin are homologous molecular chaperones that promote proper folding, oligomeric assembly, and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Both are lectins that bind to substrate glycoproteins that have monoglucosylated N-linked oligosaccharides. Their binding to newly translated influenza virus hemagglutinin (HA), and various mutants thereof, was analyzed in microsomes after in vitro translation and expression in live CHO cells. A large fraction of the HA molecules was found to occur in ternary HA– calnexin–calreticulin complexes. In contrast to calnexin, calreticulin was found to bind primarily to early folding intermediates. Analysis of HA mutants with different numbers and locations of N-linked glycans showed that although the two chaperones share the same carbohydrate specificity, they display distinct binding properties; calreticulin binding depends on the oligosaccharides in the more rapidly folding top/hinge domain of HA whereas calnexin is less discriminating. Calnexin's binding was reduced if the HA was expressed as a soluble anchor-free protein rather than membrane bound. When the co- and posttranslational folding and trimerization of glycosylation mutants was analyzed, it was observed that removal of stem domain glycans caused accelerated folding whereas removal of the top domain glycans (especially the oligosaccharide attached to Asn81) inhibited folding. In summary, the data established that individual N-linked glycans in HA have distinct roles in calnexin/calreticulin binding and in co- and posttranslational folding.  相似文献   

11.
Expression and Localization of Plant Protein Disulfide Isomerase   总被引:4,自引:1,他引:4       下载免费PDF全文
A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules.  相似文献   

12.
Envelope protein E of the flavivirus tick-borne encephalitis virus mediates membrane fusion, and the structure of the N-terminal 80% of this 496-amino-acid-long protein has been shown to differ significantly from that of other viral fusion proteins. The structure of the carboxy-terminal 20%, the stem-anchor region, is not known. It contains sequences that are important for membrane anchoring, interactions with prM (the precursor of membrane protein M) during virion assembly, and low-pH-induced structural changes associated with the fusion process. To identify specific functional elements in this region, a series of C-terminal deletion mutants were constructed and the properties of the resulting truncated recombinant E proteins were examined. Full-length E proteins and proteins lacking the second of two predicted transmembrane segments were secreted in a particulate form when coexpressed with prM, whereas deletion of both segments resulted in the secretion of soluble homodimeric E proteins. Sites located within a predicted alpha-helical region of the stem (amino acids 431 to 449) and the first membrane-spanning region (amino acids 450 to 472) were found to be important for the stability of the prM-E heterodimer but not essential for prM-mediated intracellular transport and secretion of soluble E proteins. A separate site in the stem, also corresponding to a predicted alpha-helix (amino acids 401 to 413), was essential for the conversion of soluble protein E dimers to a homotrimeric form upon low-pH treatment, a process resembling the transition to the fusogenic state in whole virions. This functional mapping will aid in the understanding of the molecular mechanisms of membrane fusion and virus assembly.  相似文献   

13.
The mechanism of entry of vaccinia virus (VV) into cells is still a poorly understood process. A 14-kDa protein (encoded by the A27L gene) in the envelope of intracellular mature virus (IMV) has been implicated in virus-cell attachment, virus-cell fusion, and virus release from cells. We have previously described the structural organization of the VV 14-kDa protein, consisting of a triple-stranded coiled-coil region responsible for oligomer formation and a predicted Leu zipper-like third alpha helix with an important role in the interaction with a 21-kDa membrane protein (encoded by the A17L gene) thought to anchor the 14-kDa protein to the envelope of IMV (M.-I. Vázquez, G. Rivas, D. Cregut, L. Serrano, and M. Esteban, J. Virol. 72:10126-10137, 1998). To identify the functional domains important for virus entry and release, we have generated VV recombinants containing a copy of the A27L gene regulated by the lacI operator-repressor system of Escherichia coli (VVIndA27L) in the thymidine kinase locus and a mutant form of the A27L gene in the hemagglutinin locus but expressed constitutively under the control of an early-late VV promoter. Cells infected with a VV recombinant that expresses a mutant 14-kDa form lacking the first 29 amino acids at the N terminus failed to form extracellular enveloped virus (EEV). Fusion-from-without assays with purified virus confirmed that the fusion process was mediated by the 14-kDa protein and the fusion domain to be contained within amino acids 29 to 43 of the N-terminal region. Competitive inhibition of the infection process with soluble heparin and synthetic peptides and in vitro experiments with purified mutant proteins identified the heparin binding domain within amino acids 21 to 33, suggesting that this domain is involved in virus-cell binding via heparan sulfate. Thus, the N terminus of the 14-kDa protein contains a heparin binding domain, a fusion domain, and a domain responsible for interacting with proteins or lipids in the Golgi stacks for EEV formation and virus spread.  相似文献   

14.
15.
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.  相似文献   

16.
Abstract: Recent studies have shown that the binding of the amyloid protein precursor (APP) of Alzheimer's disease to heparan sulfate proteoglycans (HSPGs) can modulate a neurite outgrowth-promoting function associated with APP. We used three different approaches to identify heparin-binding domains in APP. First, as heparin-binding domains are likely to be within highly folded regions of proteins, we analyzed the secondary structure of APP using several predictive algorithms. This analysis showed that two regions of APP695 contain a high degree of secondary structure, and clusters of basic residues, considered mandatory for heparin binding, were found principally within these regions. To determine which domains of APP bind heparin, deletion mutants of APP695 were prepared and analyzed for binding to a heparin affinity column. The results suggested that there must be at least two distinct heparin-binding regions in APP. To identify novel heparin-binding regions, peptides homologous to candidate heparin-binding domains were analyzed for their ability to bind heparin. These experiments suggested that APP contains at least four heparin-binding domains. The presence of more than one heparin-binding domain on APP suggests the possibility that APP may interact with more than one type of glycosaminoglycan.  相似文献   

17.
目的:比较研究HIV病毒包膜蛋白gp120与卡介苗分别及共同感染人巨噬细胞,对人巨噬细胞的破坏能力及诱导巨噬细胞产生一氧化氮(NO)能力的差异性.方法:gp120与卡介苗(BCG)分别及共同感染人巨噬细胞后,于不同时间点采用MTT法检测巨噬细胞存活率,利用硝酸还原酶法检测细胞培养上清液中NO的含量.结果:gp120与BCG分别及共同感染人巨噬细胞,均可降低巨噬细胞的存活率,但gp120与卡介苗共同感染巨噬细胞,其存活率降低更为显著(P<0.05);gp120与BCG均可激活人巨噬细胞合成和释放NO,而gp120与BCG共同感染组激活人巨噬细胞合成和释放NO的量明显低于BCG感染组(P<0.05).结论:gp120感染巨噬细胞可影响巨噬细胞抗微生物的活性,可增强卡介苗对巨噬细胞的破坏作用.  相似文献   

18.
Abstract

In this study we have undertaken attempt to predict 3D structure of the CD4 receptor-binding site of the HIV envelope protein gp120. The structure of this site has been constructed by the analysis of low-energy conformers of peptide T, an HIV reproduction inhibitor with amino acid sequence corresponding to the fragment Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr of protein gp120, ensuring the interaction of virus with T4 lymphocytes. To do this, the following researches have been carried out: i) the spatial structure models of peptide T and similar fragment 4–11 of an analogues of vasoactive intestinal peptide have been modeled by the restrained molecular mechanics method developed earlier, ii) conformational parameters of these models have been compared to geometrical characteristics of homologous segments of unrelated proteins with known spatial structures. The following major conclusions have been made based on the comparative analysis: i) the conformation of C-terminal fragment Thr-Thr-Asn-Tyr-Thr of peptide T, responsible for the biological activity of the molecule, does not undergo the essential distortions while embedding into the peptide chains of unrelated proteins; ii) this conformation, that is realized in isolated molecule and includes two consecutive reverse turns of the polypeptide chain, adequately describes the main conformational features of an appropriate site of the HIV protein gp120; iii) the fragment Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr of protein gp120 accepts one of six spatial forms which are characteristic for peptide T.  相似文献   

19.
蛋白质二硫键异构酶家族的结构与功能   总被引:1,自引:0,他引:1  
蛋白质二硫键异构酶(protein disulfide isomerase,PDI)家族是一类在内质网中起作用的巯基-二硫键氧化还原酶.它们通常含有CXXC(Cys-Xaa-Xaa-Cys,CXXC)活性位点,活性位点的两个半胱氨酸残基可催化底物二硫键的形成、异构及还原.所有PDI家族成员包含至少一个约100个氨基酸残基的硫氧还蛋白同源结构域.PDI家族的主要职能是催化内质网中新生肽链的氧化折叠,另外在内质网相关的蛋白质降解途径(ERAD)、蛋白质转运、钙稳态、抗原提呈及病毒入侵等方面也起重要作用.  相似文献   

20.
目的:以HIV为骨架构建单次复制性的含基孔肯雅病毒囊膜蛋白的假病毒模型,观察其对哺乳动物细胞的侵染性。方法:PCR合成基孔肯雅病毒囊膜蛋白基因,克隆到真核表达载体上,与HIV慢病毒包装系统质粒共转染293FT细胞,48 h后收培养上清,在8μg/mL Polybrene存在下感染293FT细胞,感染48 h后在荧光显微镜下观察结果。结果:PCR合成了基孔肯雅病毒囊膜蛋白基因并克隆到真核表达载体上,测序结果正确;共转染293FT细胞后,检测到基孔肯雅病毒囊膜蛋白的表达并包装成假病毒,感染新鲜293FT细胞后能够检测到绿色荧光蛋白。结论:合成的基孔肯雅病毒囊膜蛋白基因能正确表达并包装成假病毒,含基孔肯雅病毒囊膜蛋白的假病毒能感染293FT细胞并表达绿色荧光蛋白,可用该假病毒模型进一步研究基孔肯雅病毒的感染性,筛选评价抗基孔肯雅病毒药物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号