首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecularly imprinted polymers (MIPs) against fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c β-chains, were prepared by cross-linking of β-d-Fru-Val-O-bis(4-vinylphenylboronate) with an excess of ethylene glycol dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM). Control MIPs were prepared in analogy by cross-linking the corresponding vinylphenylboronate esters of fructose and pinacol. After template extraction batch rebinding studies were performed using different pH values and buffer compositions. The Fru-Val imprinted TRIM cross-linked polymer binds about 1.4 times more Fru-Val than the fructose imprinted polymer and 2.7 times more Fru-Val than pinacol imprinted polymer. The highest imprinting effect was obtained in 100 mM sodium carbonate/10% methanol (pH 11.4). The TRIM cross-linked Fru-Val imprinted polymer showed a better specificity than the EDMA cross-linked polymer. The binding of valine was very low. Thermo gravimetric analysis indicated that the generated Fru-Val imprinted polymer has high thermo stability. No change in binding was observed after incubation of the polymers in buffer at 80 °C for 36 h. Since the functional group of the polymers (phenyl boronic acid) targets the sugar part of Fru-Val the imprint technique used should also be applicable for the development of MIPs against other glycated amino acids and peptides.  相似文献   

2.
Cross-linked poly(methylmethacrylate-co-methacrylic acid) nanospheres were imprinted with theophylline through template radical polymerisation in diluted acetonitrile solution. This study will focus on the effect of functional monomer nature used (methylmethacrylate and/or methacrylic acid) in the recognition and in the release of template in order to develop a material with combined properties of drug delivery and rebinding for clinical applications. After template extraction the nanospheres showed satisfactory recognition properties (up to 1mg template/g of polymer). Moreover polymers prepared selectively removed theophylline with a theophylline rebinding of 5.1 times higher than that of caffeine, a compound of similar structure. Drug release properties were also satisfactory (up to 95% of loaded theophylline in 7 days).  相似文献   

3.
The high stability of quantum dots (QDots) with photoluminescence has led to their increased use as imaging approaches in biological systems to replace conventional fluorescence labels. The antibodies are generally coated on the surface of QDots to the targeting site, and molecular imprinting polymers are designed to mimic the antibodies. Hence, quantum dots can be incorporated into molecularly imprinted polymers, which provide shape and selectivity, and then respond to template rebinding by emitting quenched photoluminescence. In this study, poly(ethylene-co-ethylene alcohol) creatinine-, albumin- and lysozyme-imprinted polymers nanoparticles are synthesized via phase inversion of poly(ethylene-co-ethylene alcohol) with various ethylene mole ratios when target molecules and hydrophobic quantum dots are mixed within the polymer solution. Finally, those particles were prepared for the detection of creatinine, human serum albumin and lysozyme in real sample (urine) and compared with commercial ARCHITECT ci 8200 system.  相似文献   

4.
A phenylalanine (Phe) imprinted polymer was prepared by the wet-phase inversion and sol–gel transition method to endow a copolymer matrix with a large uptake capacity of template molecules and prominent adsorption selectivity at the high concentration of the racemate solution. A copolymer bead prepared by wet-phase inversion was shrunken in a hydrochloric acid solution containing a large amount of template molecules after swelling in a sodium hydroxide solution. Template molecules were effectively implanted in the polymer matrix during shrinking after swelling. The adsorption selectivities of Phe-imprinted copolymer bead were 2.1 and 1.33 at 1 g and 10 g Phe/l racemate solution, respectively, and the Phe uptake capacity reached about 1 g Phe/g dry weight of the copolymer. The adsorption selectivity of the copolymer was retained after five batches of adsorption/desorption in 1 g Phe/l solution composed of 5% D-Phe and 95% L-Phe.  相似文献   

5.
The aim of this work was to produce a thin, flexible and diffusion able molecularly imprinted polymeric matrix with good template accessibility. Membranes were prepared using a non‐covalent molecular imprinting approach and their physical characteristics and binding capabilities investigated. Two materials were used, a poly(tri‐ethyleneglycol dimethyacrylate‐co‐methyl methacrylate‐co‐methacrylic acid) copolymer containing 14% cross‐linker and a monomer (g) to porogen (ml) ratio of 1:0.5 (A), and a blend of poly(TEGMA‐co‐MAA) and polyurethane (B). The polyurethane was added to improve membrane flexiblity and stability. The polymers were characterized using AFM, SEM and nitrogen adsorption, whilst binding was evaluated using batch‐rebinding studies. For all membranes the specific surface area was low (<10 m2/g). MIP (A) films were shown to bind specifically at low concentrations but specific binding was masked by non‐specific interactions at elevated concentrations. Selectivity studies confirmed specificity at low concentrations. KD approximations confirmed a difference in the population of binding sites within NIP and MIP films. The data also indicated that at low concentrations the ligand‐occupied binding site population approached homogeneity. Scanning electron microscopy images of membrane (B) revealed a complex multi‐layered system, however these membranes did not demonstrate specificity for the template. The results described here demonstrate how the fundamental parameters of a non‐covalent molecularly imprinted system can be successfully modified in order to generate flexible and physically tolerant molecularly imprinted thin films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Polymer capable of specific binding to Cu(2+)-2, 2'-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu(2+)-2, 2'-dipyridyl complex) was investigated by cyclic voltammetric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The results demonstrated that cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.  相似文献   

7.
Candida rugosa lipase was entrapped in hybrid organic–inorganic sol-gel powder prepared by acid-catalyzed polymerization of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes, and used in catalyzing esterification reactions between ethanol and butyric acid in hexane. Optimum preparation conditions were studied, which are gels made from propyltrimethoxysilane (PTMS)/TMOS molar ratio=4:1, hydrolysis time of silane precursor=30 min, water/silane molar ratio=24, enzyme loading=6.25% (w/w) of gel, and 1 mg PVA/mg lipase. The percentage of protein immobilization was 95% and the resulting lipase specific activity was 59 times higher than that of a non-immobilized lyophilized lipase. To prepare magnetic lipase-immobilized sol-gel powder (MLSP) for easier recovery of the biocatalyst, Fe3O4 nanoparticles were prepared and co-entrapped with lipase during gel formation. This procedure induced surface morphological change of the sol-gel powder and showed adverse effect on enzyme activity. Hence, although only 9% decrease in protein immobilization efficiency was observed, the corresponding reduction in enzyme activity could be up to 45% when sol-gel powder was doped with 25% (v/v) Fe3O4 magnetic nanoparticles solution. Lipase-immobilized sol-gel polymer was also formed within the pores of different porous supports to improve its mechanical stability. Non-woven fabric, with a medium pore size of all the supports tested, was found to be the best support for this purpose. The thermal stability of lipase increased 55-fold upon entrapment in sol-gel materials. The half-lives of all forms of sol-gel-immobilized lipase were 4 months at 40 °C in hexane.  相似文献   

8.
Epitope imprinting is a promising technique for fabrication of novel diagnostic tools. In this study, an epitope imprinted methodology for recognition of target epitope sequence as well as targeted protein infused by bacterial infection in blood samples of patients suffering from brain fever is developed. Template sequence chosen is a ferric iron binding fbp A protein present in Neisseria meningitidis bacteria. To orient the imprinting template peptide sequence on gold surface of electrochemical quartz crystal microbalance (EQCM), thiol chemistry was utilized to form the self‐assembled monolayer on EQCM electrode. Here, synergistic effects induced by various noncovalent interactions extended by multiple monomers (3‐sulfopropyl methacrylate potassium‐salt and benzyl methacrylate) were used in fabricating the imprinting polymeric matrix with additional firmness provided by N,N‐methylene‐bis‐acrylamide as cross‐linker and azo‐isobutyronitrile as initiator. Extraction of template molecule was carried out with phosphate buffer solution. After extraction of epitope molecules from the polymeric film, epitope molecularly imprinted polymeric films were fabricated on EQCM electrode surface. Nonimprinted polymers were also synthesized in the similar manner without epitope molecule. Detection limit of epitope molecularly imprinted polymers and imprinting factor (epitope molecularly imprinted polymers/nonimprinted polymers) was calculated 1.39 ng mL?1 and 12.27 respectively showing high binding capacity and specific recognition behavior toward template molecule. Simplicity of present method would put forward a fast, facile, cost‐effective diagnostic tool for mass health care.  相似文献   

9.
Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine‐imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP‐80 (N= 16.0 μmol/g) compared to PCP‐90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP‐80 microspheres are more selective toward histamine than conventional thermal polymers (CTP‐80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross‐rebinding and competitive conditions. These results demonstrated that histamine‐selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical‐based histamine sensing.  相似文献   

10.
Leukocytes were separated from whole porcine blood using laboratory prepared polymeric asymmetric porous membranes from cellulose acetate (CA) and by applying standard blood cell separation methods: centrifugation in a Ficoll solution gradient and in sucrose solution concentration gradient. Leukocytes, obtained by different separation methods were characterised by their quantity, type, viability and growth ability. Membranes prepared by a wet phase inversion process from different cellulose acetate/acetone/water and magnesium chlorate VII systems, were characterised according to: permeability to deionised water, surface morphology and by the determination of the flux of the permeate during the whole porcine blood separation. Cellulose acetate membranes prepared from 300 μm thick cast solution (14.8 wt% of cellulose acetate, 19.9 wt% of water, 2.3 wt% of Magnesium perchlorate, and 63.0 wt% of acetone), have separation characteristics comparable with the standard separation methods; in the dead-end mode filtration, 21.3% of leukocytes from porcine whole blood are separated. The leukocyte number in peripheral blood before separation was 450,000 ml-1; the number passed through after was 95,000±6620. The main interest of the study was to introduce the CA membrane filters for the continus technological separation of the leukocyte/lymphocytes from animal (= porcine, bovine, horse..) blood. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The variety of applications utilizing molecularly imprinted polymers (MIPs) requires synthetic strategies yielding different MIP formats including films, irregular particles, or spheres, along with precise knowledge on the specific material characteristics, such as binding capacity and binding efficiency of these materials. In response to this demand, MIPs are prepared in different formats by variation of the polymerization methodology. It is commonly agreed that micro- and sub-microspheres are particularly advantageous MIP formats, due to their monodispersity and facile synthesis procedures in contrast to conventional imprinted polymers prepared by bulk polymerization. However, the differences in actual rebinding characteristics of different MIP formats based on molecular interactions under a variety of binding/rebinding conditions have not been studied in detail to date. Consequently, the present work details an analytical strategy generically applicable to MIP systems for rebinding studies including equilibrium binding, non-equilibrium binding, and release experiments enabling more profound understanding on the molecular interactions between the imprinted materials and the template molecules. In this study, three MIP formats were considered for the same template molecule, 17beta-estradiol: irregularly shaped particulate polymers prepared by bulk polymerization and grinding, microspheres, and sub-microspheres. The latter two formats were synthesized via precipitation polymerization using different processing strategies. The morphologies and porosities of the resulting imprinted materials were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, respectively. The obtained results indicate that microspheres prepared by precipitation polymerization provide superior rebinding properties during equilibrium binding in contrast to bulk polymers and sub-microspheres, and that the rebinding properties are different during equilibrium binding versus non-equilibrium binding. The median binding affinity constant determined during non-equilibrium rebinding is higher than the values obtained from equilibrium rebinding. Furthermore, the binding site distribution appears more homogeneous thief derived from non-equilibrium rebinding, as reflected in a heterogeneity index of m=0.725. Moreover, it is hypothesized that the specific interactions between template and monomers are related to the porosity of the imprinted polymers, which implies that the amount of binding sites and the pore sized distribution of the imprinted materials are a critical factor in achieving the desired MIP performance in various analytical applications. The BET results indicate that particles prepared with lower cross-linker-to-template ratio have a reduced surface area. Furthermore, it can be expected that there are less specific binding sites available at particles with reduced surface area and pore volume given similar distribution of the binding sites, as confirmed by the equilibrium binding isotherm studies. The pore size distribution results reveal that control of the pore size in the range of 100-180 A is essential to obtain the desired retention properties and Gaussian peak shape during HPLC analysis of small molecules.  相似文献   

12.
The aim of this study was to assess plasma biochemistry parameters with the potential of being used as indicators of the nutritional status for healthy gilthead seabream juveniles. Triplicate groups of 18 seabream (body weight of 58 g) were kept unfed for 24 h, 7 or 14 days. Nine fish per treatment were then sampled randomly for blood collection and the following parameters analyzed in the plasma using standard clinical methods: glucose; protein; triglycerides; cholesterol; calcium; magnesium; inorganic phosphorus; alkaline phosphatase (ALP); aspartate aminotransferase (AST); lactate dehydrogenase (LDH); gamma‐glutamyl transferase (GGT); creatine phosphokinase (CPK); and lipase. Biochemical parameters showed lower variability among individuals than did enzymatic parameters. Plasma glucose, protein, cholesterol, calcium and inorganic phosphorus levels were inversely related to the duration of starvation. On the contrary, plasma triglycerides decreased significantly during the first week of starvation and remained stable in the second week. Plasma ALP, AST and LDH decreased significantly after 1 week of starvation and then remained constant. In healthy seabream juveniles, plasma glucose, protein, cholesterol, calcium and inorganic phosphorus are responsive to starvation and may be useful indicators of the nutritional status of the animals. Indicative baseline reference values for gilthead seabream juveniles starved for 24 h and held at optimum temperature are: protein, 3.7–4.9 g dl?1; cholesterol, 341–407 mg dl?1; calcium, 13.1–8.0 mg dl?1; and inorganic phosphorus, 10–14.2 mg dl?1. Plasma triglycerides, along with plasma enzyme activities, may be useful as indicators of short term starvation. For these parameters baseline values after 1 week of starvation were: triglycerides: 138–230 mg dl?1; ALP: 58–125 U L?1; AST: 15–127 U L?1; and LDH 61–677 U L?1. Plasma glucose is only responsive to longer starvation periods, remaining relatively stable during the first week of starvation, and ranging from 59 to 196 mg dl?1.  相似文献   

13.
This work describes the development of a competitive flow-through FIA assay for digoxin using a molecularly imprinted polymer (MIP) as the recognition phase. In previous work, a number of non-covalent imprinted polymers were synthesised by “bulk” polymerisation. The digoxin binding and elution characteristics of these MIPs were then evaluated to obtain a highly selective material for integration into a sensor. The optimum MIP was synthesised by photo-initiated polymerisation of a mixture containing digoxin, MAA, EDGMA and AIBN in acetonitrile. The bulk polymer was ground and sieved and the template removed by Soxhlet extraction in MeOH/ACN. The MIP was packed into a flow cell and placed in a spectrofluorimeter to integrate the reaction and detection systems. The physical and chemical variables involved in digoxin determination by the sensor (nature and concentration of solution, flow rates, etc.) were optimised. Binding with the non-imprinted polymer (NIP) was also analysed. The new fluorosensor showed high selectivity and sensitivity, a detection limit of 1.7 × 10−2 μg l−1, and high reproducibility (R.S.D. of 1.03% and 1.77% for concentrations of 1.0 × 10−3 and 4.0 × 10−3 mg l−1, respectively). Selectivity was tested by determining the cross-reactivity of several compounds with structures analogous to digoxin. Under the assay conditions used, in which the potential interfering compounds were in concentrations 100 times higher than that of the analyte, no interference was recorded. The proposed fluorosensor was successfully used to determine digoxin concentration of human serum samples.  相似文献   

14.
Tu X  Xie Q  Jiang S  Yao S 《Biosensors & bioelectronics》2007,22(12):2819-2826
The electrochemical quartz crystal impedance (EQCI) method was used to study the overoxidation of polypyrrole (PPy)–multiwalled carbon nanotubes (MWCNT) nanocomposite film in neutral and alkaline solutions. The values of molar mass per electron transferred (M/n) obtained during the overoxidation of PPy in 0.10 mol L−1 Na2SO4 and 0.20 mol L−1 NaOH aqueous solutions were estimated to be ca. 17 and 22 g mol−1, respectively, suggesting the nucleophilic attack of solution OH to the pyrrole units during the overoxidation, and the possible partial formation of carboxylic groups after the overoxidation in the NaOH solution. Also, the overoxidized PPy–MWCNT composite film prepared in the NaOH solution showed a notably larger affinity to dopamine (DA) dissolved in a neutral phosphate buffer than that prepared in the Na2SO4 solution. The modification of the overoxidized nanocomposite film improved substantially the sensitivity for DA assay in a neutral phosphate buffer, as compared with the modification of overoxidized PPy or MWCNT alone. At a −6 kHz (201-nm thickness) nanocomposite film prepared in a polymerization bath containing 1.0 mg mL−1 MWCNT and overoxidized in 0.20 mol L−1 aqueous NaOH, the peak current response from differential pulse voltammetric assay of DA was linear with DA concentration from 4.0 × 10−8 to 1.4 × 10−6 mol L−1, with a lower limit of detection of 1.7 nmol L−1, good anti-interferent ability, as well as good stability and reproducibility.  相似文献   

15.
Aims:  To investigate the antibacterial mechanism of carvacrol and thymol against Escherichia coli.
Methods and Results:  The time-kill curve results showed that carvacrol and thymol at 200 mg l−1 could inhibit the growth of E. coli . Flow cytometry and fluorescent dyes were used to explore the effect of two components on membrane permeability and membrane potential. In membrane permeability experiment, the mean fluorescence intensity of cells treated with 200 mg l−1 carvacrol or thymol were lower than nonexposed cells. The ratio of red to green fluorescence intensity of DiOC2(3) reflected the change of membrane potential. Carvacrol and thymol at 200 mg l−1 caused the ratio of red/green decreasing from 0·42 of control to 0·08 and 0·07, respectively.
Conclusions:  Carvacrol and thymol had desired antimicrobial effect on E. coli . The antibacterial effects were attributed to their ability to permeabilize and depolarize the cytoplasmic membrane.
Significance and Impact of the Study:  This study showed the potential use of flow cytometry as a suitable method to investigate the mode of antibacterial action of essential oil components.  相似文献   

16.
Atrazine sensing by molecularly imprinted membranes   总被引:10,自引:0,他引:10  
New types of polymeric membranes containing molecular recognition sites for atrazine have been prepared using the molecular imprinting approach. The membrane synthesis includes radical polymerization of diethyl aminoethyl methacrylate and ethylene glycol dimethacrylate in the presence of atrazine as template. After splitting off the template molecules, these polymers have been used as materials for conductimetric sensors, sensitive for the herbicide. Influence of polymerization conditions on membrane sensitivity and nature of sensor response is discussed.

With this system atrazine in solution can be detected in the range 0.01–0.50 mg/L. Although this dynamic range is at present not large, the membranes did not show loss of sensitivity for at least 4 months. The response time for the sensor is in the order of 30 min, which might be reduced using thinner imprinted membranes.  相似文献   


17.
Poly(catechol) was prepared by using peroxidase as a catalyst in two types of solvent systems: an aqueous dioxane solution and a reverse micellar solution. Peroxidases derived from two sources, horseradish (HRP) and soybean (SBP), were employed as catalyst. The structure of the prepared polymer was elucidated by infrared analysis. Enzymatically prepared film of poly(catechol) at a Pt electrode was subjected to cyclic voltammetric studies in aqueous HCl medium and phosphate buffer pH 6.5. Thermal studies of the polymer were performed by thermogravimetric analysis. The iodine-labelled polymers showed low electrical conductivity in the range of 10−6 to 10−9 S cm−1. The magnetic susceptibility and surface morphological property of the polymer were also studied.  相似文献   

18.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

19.
In order to utilize the psyllium husk a medicinally important natural polysaccharide and to develop the novel hydrogels meant for the colon specific drug delivery, we have prepared psyllium and methacrylamide based polymeric networks by using N,N′-methylenebisacrylamide (NN-MBAAm) as crosslinker and ammonium persulfate (APS) as initiator. To study various structural aspects of the polymeric networks thus formed psy-cl-poly(MAAm), these were characterized with SEMs, FTIR, TGA and swelling studies. The swelling studies of networks were carried out as a function of time, temperature, pH and [NaCl]. Equilibrium swelling has been observed to depend on both composition of the polymer and nature of swelling medium. Maximum percent swelling 1262 was observed for the polymeric network prepared with 19.45 × 10−3 mol/L of [NN-MBAAm] at 40 °C in 0.5 M NaOH solution. This article also discusses the release dynamics of tetracycline hydrochloride from the hydrogels, for the evaluation of the drug release mechanism and diffusion coefficients of drug from the polymer matrix. The effect of pH on the release pattern of tetracycline hydrochloride has been studied by varying the pH of the release medium. It has been observed from the release dynamics of drug from the hydrogels that the diffusion exponent ‘n’ have 0.477, 0.423 and 0.427 values and gel characteristic constant ‘k’ have 5.07 × 10−2, 6.34 × 10−2 and 6.38 × 10−2 values, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer solution. The values the ‘n’ indicated that the Fickian type diffusion mechanism occurred for the release of tetracycline hydrochloride from drug loaded psy-cl-poly(MAAm) polymers in different release mediums. In Fickian type diffusion mechanism, the rate of polymer chain relaxation is more as compare to the rate of drug diffusion from these hydrogels and release behavior follows Fick’s law of diffusion. In each release medium, the values of the initial diffusion coefficient ‘Di’ for the release of tetracycline hydrochloride was higher than the values of late time diffusion coefficient ‘DL’ indicating that in the start, the diffusion of drug from the polymeric matrix was faster as compare to the latter stages.  相似文献   

20.
To obtain liposomes which release the contents in response to ambient temperature, liposomes modified with copolymers of N-isopropylacrylamide with varying lower critical solution temperatures have been designed. Poly(N-isopropylacrylamide-co-acrylamide)s with various compositions were synthesized by free-radical copolymerization. The lower critical solution temperature of the polymer increased with increasing acrylamide content in the polymer. Poly(N-isopropylacrylamide-co-acrylamide-co-N, N-didodecylacrylamide)s were also prepared via the same method as the thermosensitive polymers having anchor groups to the liposome membrane. Calcein-loaded dioleoylphosphatidylethanolamine/egg yolk phosphatidylcholine (6:4, w/w) liposomes were coated with these polymers by incubating the liposomes with aqueous solutions of the polymers. The liposomes hardly released the contents below the lower critical solution temperature of the polymer, but the release was greatly enhanced above that temperature. The liposomes were also made from a mixture of the same lipids and the polymer. The liposome revealed a more drastic release property than the liposomes prepared by the incubation with the polymer solution, because the polymer chains were bound on both surfaces of the membrane. The close relationship between lower critical solution temperatures of the polymers and temperature regions where enhancement of the release from the polymer-fixed liposomes demonstrates that the release was triggered by alteration of the polymers from a hydrophilic state to a hydrophobic state occurring at their lower critical solution temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号