首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) in infected cells. This phosphorylation downregulates cell surface expression of gB and plays a role in viral pathogenesis in the mouse herpes stromal keratitis model. In the present study, we demonstrated that Us3 phosphorylation of gB Thr-887 upregulated the accumulation of endocytosed gB from the surfaces of infected cells. We also showed that two motifs in the cytoplasmic tail of gB, tyrosine at position 889 (Tyr-889) and dileucines at positions 871 and 872, were required for efficient downregulation of gB cell surface expression and upregulation of accumulation of endocytosed gB in infected cells. A systematic analysis of mutations in these three sequences in gB suggested that the expression of gB on the surfaces of infected cells was downregulated in part by the increase in the accumulation of endocytosed gB, which was coordinately and tightly regulated by the three gB trafficking signals. Tyr-889 appeared to be of predominant importance in regulating the intracellular transport of gB and was linked to HSV-1 neurovirulence in mice following intracerebral infection. These observations support the hypothesis that HSV-1 evolved the three gB sequences for proper regulation of gB intracellular transport and that this regulation plays a critical role in diverse aspects of HSV-1 pathogenesis.  相似文献   

2.
We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.The herpes simplex virus 1 (HSV-1) Us3 gene encodes a serine/threonine protein kinase with an amino acid sequence that is conserved in the subfamily Alphaherpesvirinae (9, 20, 29). The Us3 kinase phosphorylation target site has been reported to be similar to that of protein kinase A (PKA), a cellular cyclic AMP-dependent protein kinase (3, 12). Us3 catalytic activity plays important roles in viral replication and pathogenesis in vivo, based on studies showing that recombinant Us3 null mutant viruses and recombinant viruses encoding catalytically inactive Us3 have significantly reduced virulence, pathogenicity, and replication in mouse models (21, 34). In contrast, Us3 is not essential for growth in tissue culture cells (29). Thus, recombinant Us3 mutants grow as well as wild-type virus in Vero cells and have modestly impaired growth in a specific cell line such as HEp-2 cells (32, 33). The catalytic activity of Us3 is, in part, regulated by autophosphorylation of its serine at position 147 (Ser-147), and regulation of Us3 activity by autophosphorylation of Ser-147 appears to play a critical role in HSV-1 replication in vivo and in HSV-1 pathogenesis (34). Numerous studies have elucidated the potential downstream effects of Us3, including blocking apoptosis (18, 26-28), promoting nuclear egress of progeny nucleocapsids through the nuclear membrane (24, 32, 33), redistributing and phosphorylating nuclear membrane-associated viral nuclear egress factors UL31 and UL34 (13, 24, 30, 31) and cellular proteins including lamin A/C and emerin (16, 22, 23), controlling infected cell morphology (12, 27), and downregulating cell surface expression of viral envelope glycoprotein B (gB) (11).Two substrates that mediate some of the Us3 functions described above have been identified. First, it has been shown that Us3 phosphorylates Thr-887 in the cytoplasmic tail of gB, which appears to downregulate cell surface expression of gB (11). This conclusion is based on the observation that a T887A mutation in gB (gB-T887A) markedly upregulated cell surface expression of gB in infected cells: this upregulation was also observed with a recombinant virus encoding a Us3 kinase-inactive mutant, whereas a phosphomimetic substitution for gB Thr-887 restored wild-type cell surface expression of gB (11). Us3 phosphorylation of gB Thr-887 has also been proposed to be involved in regulation of fusion of the nascent progeny virion envelope with the cell''s outer nuclear membrane, based on the observation that virions accumulated aberrantly in the perinuclear space in cells infected with a mutant virus carrying the gB-T887A substitution mutation and lacking the capacity to produce gH (42). Second, it has been shown that Us3 may phosphorylate some or all of the six serines in the UL31 N-terminal region (24). Such phosphorylation might regulate proper localization of UL31 and UL34 at the nuclear membrane, nuclear egress of nucleocapsids, and viral growth in cell cultures since the Us3 kinase-inactive mutant phenotype for nuclear egress (i.e., mislocalization of UL31 and UL34 at the nuclear membrane, aberrant accumulation of virions within herniations of the nuclear membrane, and decreased viral growth in cell cultures) is also produced by replacement of the six serines in the UL31 N-terminal region with alanines while phosphomimetic substitutions of the six serines restored the wild-type phenotype (24).Thus, the molecular mechanisms for some of the downstream effects of Us3 phosphorylation have been gradually elucidated. However, it remains to be shown whether the Us3 functions reported to date are in fact involved in viral replication and pathogenicity in vivo. In the present study, we focused on Us3 phosphorylation of gB Thr-887 and examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo. These studies have shown that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis (HSK) and periocular skin disease in mice, as reported for infection of mice with a recombinant virus carrying a Us3 kinase-inactive mutant (34). These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically recognized phosphorylated gB Thr-887 and used this antibody to directly study the functional consequences of Us3 phosphorylation of gB Thr-887 in infected cells. We also present data showing that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly gB localization on the cell surface of infected cells.  相似文献   

3.
Us3 is a serine/threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). Here, we report the identification of a physiological Us3 phosphorylation site on serine at position 147 (Ser-147) which regulates its protein kinase activity in vitro. Moreover, mutation of this site influences Us3 function, including correct localization of the enzyme and induction of the usual morphological changes in HSV-1-infected cells. These conclusions are based on the following observations: (i) in in vitro kinase assays, a domain of Us3 containing Ser-147 was specifically phosphorylated by Us3 and protein kinase A, while a mutant domain in which Ser-147 was replaced with alanine was not; (ii) in vitro, alanine replacement of Ser-147 (S147A) in Us3 resulted in significant impairment of the kinase activity of the purified molecule expressed in a baculovirus system; (iii) phosphorylation of Ser-147 in Us3 tagged with the monomeric fluorescent protein (FP) VenusA206K (VenusA206K-Us3) from Vero cells infected with a recombinant HSV-1 encoding VenusA206K-Us3 was specifically detected using an antibody that recognizes phosphorylated serine or threonine residues with arginine at the -3 and -2 positions; and (iv) the S147A mutation influenced some but not all Us3 functions, including the ability of the protein to localize itself properly and to induce wild-type cytopathic effects in infected cells. Our results suggest that some of the regulatory activities of Us3 in infected cells are controlled by phosphorylation at Ser-147.  相似文献   

4.
Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases and play critical roles in viral replication and pathogenicity in vivo. In the present study, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases and demonstrated that HSV-2 Us3 did not have some of the HSV-1 Us3 kinase functions, including control of nuclear egress of nucleocapsids, localization of UL31 and UL34, and cell surface expression of viral envelope glycoprotein B. In agreement with the observations that HSV-2 Us3 was less important for these functions, the effect of HSV-2 Us3 kinase activity on virulence in mice following intracerebral inoculation was much lower than that of HSV-1 Us3. Furthermore, we showed that alanine substitution in HSV-2 Us3 at a site (aspartic acid at position 147) corresponding to one that can be autophosphorylated in HSV-1 Us3 abolished HSV-2 Us3 kinase activity. Thus, the regulatory and functional effects of Us3 kinase activity are different between HSV-1 and HSV-2.Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases with amino acid sequences that are conserved in the subfamily Alphaherpesvirinae (6, 24, 36). Based on studies showing that recombinant Us3 mutants of HSV-1 and HSV-2 have significantly impaired viral replication and virulence in mice models, it has been concluded that both HSV-1 and HSV-2 Us3 protein kinases play important roles in viral replication and pathogenicity in vivo (25, 33, 41). In contrast, HSV-1 and HSV-2 Us3 protein kinases are not essential for growth in tissue culture cells (33, 36). Thus, recombinant Us3 mutants grow as well as wild-type viruses in Vero cells, and the mutants exhibit modestly impaired replication in HEp-2 cells (33, 36, 39, 40). The possible functions of Us3 have been extensively studied and gradually elucidated for HSV-1 Us3, but much less is known about HSV-2 Us3. These functions include (i) blocking apoptosis (1, 22, 30, 31, 35); (ii) promoting nuclear egress of progeny nucleocapsids through the nuclear membrane (39, 40, 45); (iii) redistributing and phosphorylating nuclear membrane-associated viral nuclear egress factors UL31 and UL34 (14, 37, 38) and cellular proteins, including lamin A/C and emerin (21, 27, 28); (iv) controlling infected cell morphology (13, 31, 32); and (v) downregulating cell surface expression of viral envelope glycoprotein B (gB) (12).To determine the molecular mechanisms for a viral protein kinase''s effects in infected cells, the kinase''s physiological substrates and its phosphorylation sites must be identified. This can involve studies showing that the altered phenotypes observed in cells infected with a mutant virus lacking the protein kinase activity is also detected in cells infected with a mutant virus in which the substrate''s phosphorylation sites have been modified by mutations. Although more than 15 potential HSV Us3 substrates have been reported, HSV-1 Us3 phosphorylation of only three substrates (Us3 itself, gB, and UL31) has been demonstrated to be linked directly with Us3 functions in infected cells (12, 13, 29, 41) as follows. (i) Us3 has been reported to autophosphorylate serine at position 147 (Ser-147), and this phosphorylation augments Us3''s kinase activity in infected cells (13, 41). Even though only a small fraction of Us3 is autophosphorylated at Ser-147 in infected cells, alanine replacement of Ser-147 in Us3 significantly reduced HSV-1 replication in the mouse cornea and pathogenic manifestations of herpes stroma keratitis and periocular skin disease in mice (41). These results indicated that Us3 kinase activity was, in part, regulated by autophosphorylation of Ser-147, and regulation of Us3 activity by autophosphorylation played a critical role in viral replication in vivo and HSV-1 pathogenesis. (ii) It has been reported that HSV-1 Us3 phosphorylates Thr-887 in the cytoplasmic tail of gB, and this phosphorylation downregulates the cell surface expression of gB (12). Us3 phosphorylation of gB at Thr-887 also has been proposed to be involved in the regulation of fusion of the nascent progeny virion envelope with the cell''s outer nuclear membrane, based on the observation that virions accumulated aberrantly in the perinuclear space in cells infected with mutant viruses carrying the amino acid substitution mutation T887A in gB and lacking the capacity to produce gH (45). The Us3 phosphorylation of gB at Thr-887 appeared to be critical for HSV-1 replication and pathogenesis in vivo, based on studies showing that the T887A substitution in the phosphorylation site in gB significantly reduced viral replication in the mouse cornea and pathogenic manifestations of herpes stroma keratitis and periocular skin disease in mice (Takahiko Imai, Ken Sagou, and Yasushi Kawaguchi, unpublished observations). (iii) It has been shown that Us3 phosphorylated some or all of the six serines in the UL31 N-terminal region, and this phosphorylation regulated the proper localization of UL31 and UL34 at the nuclear membrane and nuclear egress of nucleocapsids (29). Thus, the molecular basis of HSV-1 Us3 effects in infected cells have been gradually elucidated.However, the Us3 phosphorylation sites in Us3 itself and in gB are not conserved between HSV serotypes (12, 13). The amino acid residues in HSV-2 Us3 and gB corresponding to HSV-1 Us3 Ser-147 and gB Thr-887 are aspartic acid (Asp-147) and alanine (Ala-887), respectively. These results suggest that some HSV-1 Us3 functions, such as regulation of its own catalytic activity and control of gB expression on the cell surface, are not regulated by HSV-2 Us3 or are regulated in a manner(s) different from HSV-1 Us3. In agreement with this suggestion, there is a marked difference between HSV-1 and HSV-2 virulence in mice following intracerebral infection, with the HSV-1 Us3 null mutant being >104-fold less virulent than the parent wild-type virus (25), while the HSV-2 Us3 null mutant was only ∼10-fold less virulent (33). Although these results were from different reports and the mouse strains used in the studies were different, they indicate that some HSV-1 Us3 functions are different from those of HSV-2 Us3.Therefore, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases. It was of particular interest to examine whether Asp-147 in HSV-2 Us3 is required for its own kinase activity, since it is well established that acidic amino acids such as Asp or glutamic acid sometimes mimic the negative charges produced by phosphorylation (29, 46). In the present study, using a genetic manipulation system of HSV-2 with our newly constructed HSV-2 bacterial artificial chromosome (BAC) clone, we have shown that HSV-2 Us3 exhibited marked differences from HSV-1 Us3 in its catalytic functions, including the regulation of UL31/UL34 localization, nuclear egress of nucleocapsids, cell surface expression of gB, and virulence in mice. We also found that Asp-147 in HSV-2 Us3 was critical for its kinase activity, raising a possibility that the activity of Us3 kinases was regulated differently in HSV-1 and HSV-2.  相似文献   

5.
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). In this study, a large-scale phosphoproteomic analysis of titanium dioxide affinity chromatography-enriched phosphopeptides from HSV-1-infected cells using high-accuracy mass spectrometry (MS) and subsequent analyses showed that Us3 phosphorylated HSV-1-encoded dUTPase (vdUTPase) at serine 187 (Ser-187) in HSV-1-infected cells. Thus, the following observations were made. (i) In in vitro kinase assays, Ser-187 in the vdUTPase domain was specifically phosphorylated by Us3. (ii) Phosphorylation of vdUTPase Ser-187 in HSV-1-infected cells was detected by phosphate-affinity polyacrylamide gel electrophoresis analyses and was dependent on the kinase activity of Us3. (iii) Replacement of Ser-187 with alanine (S187A) in vdUTPase and an amino acid substitution in Us3 that inactivated its kinase activity significantly downregulated the enzymatic activity of vdUTPase in HSV-1-infected cells, whereas a phosphomimetic substitution at vdUTPase Ser-187 restored the wild-type enzymatic activity of vdUTPase. (iv) The vdUTPase S187A mutation as well as the kinase-dead mutation in Us3 significantly reduced HSV-1 replication in human neuroblastoma SK-N-SH cells at a multiplicity of infection (MOI) of 5 but not at an MOI of 0.01, whereas the phosphomimetic substitution at vdUTPase Ser-187 restored the wild-type viral replication at an MOI of 5. In contrast, these mutations had no effect on HSV-1 replication in Vero and HEp-2 cells. Collectively, our results suggested that Us3 phosphorylation of vdUTPase Ser-187 promoted HSV-1 replication in a manner dependent on cell types and MOIs by regulating optimal enzymatic activity of vdUTPase.  相似文献   

6.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

7.
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). We have identified UL47, a major virion protein, as a novel physiological substrate of Us3. In vitro kinase assays and systematic analysis of mutations at putative Us3 phosphorylation sites near the nuclear localization signal of UL47 showed that serine at residue 77 (Ser-77) was required for Us3 phosphorylation of UL47. Replacement of UL47 Ser-77 by alanine produced aberrant accumulation of UL47 at the nuclear rim and impaired the nuclear localization of UL47 in a significant fraction of infected cells. The same defect in UL47 localization was produced by an amino acid substitution in Us3 that inactivated its protein kinase activity. In contrast, a phosphomimetic mutation at UL47 Ser-77 restored wild-type nuclear localization. The UL47 S77A mutation also reduced viral replication in the mouse cornea and the development of herpes stromal keratitis in mice. In addition, UL47 formed a stable complex with Us3 in infected cells, and nuclear localization of Us3 was significantly impaired in the absence of UL47. These results suggested that Us3 phosphorylation of UL47 Ser-77 promoted the nuclear localization of UL47 in cell cultures and played a critical role in viral replication and pathogenesis in vivo. Furthermore, UL47 appeared to be required for efficient nuclear localization of Us3 in infected cells. Therefore, Us3 protein kinase and its substrate UL47 demonstrated a unique regulatory feature in that they reciprocally regulated their subcellular localization in infected cells.  相似文献   

8.
The Us3 kinase is part of the antiapoptotic arsenal that salvages herpes simplex virus (HSV)-1-infected cells from damage caused by different stimuli. We demonstrate that Us3 protects HSV-1-infected cells from lysis by MHC class I-restricted CD8T cells without affecting antigen presentation. Expression of Us3 was associated with inhibition of caspase activation and reduced cleavage of the proapoptotic protein Bid. Recombinant granzyme B (GrB) failed to cleave Bid in cytosolic extracts from Us3 positive cells, while recombinant Bid served as substrate for Us3 phosphorylation, suggesting that modification of Bid by Us3 blocks its processing by GrB. Our data illustrate a new strategy of viral escape, where modification of a cellular proapoptotic substrate may prevent lysis of the infected cells without affecting other T-cell functions.  相似文献   

9.
Mitogen-activated protein kinase kinase 1 (MKK1), a dual-specificity tyrosine/threonine protein kinase, has been shown to be phosphorylated and activated by the raf oncogene product as part of the mitogen-activated protein kinase cascade. Here we report the phosphorylation and inactivation of MKK1 by phosphorylation on threonine 286 and threonine 292. MKK1 contains a consensus phosphorylation site for p34cdc2, a serine/threonine protein kinase that regulates the cell division cycle, at Thr-286 and a related site at Thr-292. p34cdc2 catalyzes the in vitro phosphorylation of MKK1 on both of these threonine residues and inactivates MKK1 enzymatic activity. Both sites are phosphorylated in vivo as well. The data presented in this report provide evidence that MKK1 is negatively regulated by threonine phosphorylation.  相似文献   

10.
Us3, a serine/threonine kinase encoded by all alphaherpesviruses, plays diverse roles during virus infection, including preventing virus-induced apoptosis, facilitating nuclear egress of capsids, stimulating mRNA translation and promoting cell-to-cell spread of virus infection. Given this diversity, the full spectrum of Us3 function may not yet be recognized. We noted, in transiently transfected cells, that herpes simplex virus type 2 (HSV-2) Us3 disrupted promyelocytic leukemia protein nuclear bodies (PML-NBs). However, PML-NB disruption was not observed in cells expressing catalytically inactive HSV-2 Us3. Analysis of PML-NBs in Vero cells transfected with pseudorabies virus (PRV) Us3 and those in Vero cells infected with Us3-null or -repaired PRV strains indicated that PRV Us3 expression also leads to the disruption of PML-NBs. While loss of PML-NBs in response to Us3 expression was prevented by the proteasome inhibitor MG132, Us3-mediated degradation of PML was not observed in infected cells or in transfected cells expressing enhanced green fluorescent protein (EGFP)-tagged PML isoform IV. These findings demonstrate that Us3 orthologues derived from distantly related alphaherpesviruses cause a disruption of PML-NBs in a kinase- and proteasome-dependent manner but, unlike the alphaherpesvirus ICP0 orthologues, do not target PML for degradation.  相似文献   

11.
LIM-kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing factor, and regulates actin cytoskeletal reorganization. LIMK1 is activated by the small GTPase Rho and its downstream protein kinase ROCK. We now report the site of phosphorylation of LIMK1 by ROCK. In vitro kinase reaction revealed that the active forms of ROCK phosphorylated LIMK1 on the threonine residue and markedly increased its cofilin-phosphorylating activity. A LIMK1 mutant (T508A) with replacement of Thr-508 within the activation loop of the kinase domain by alanine was neither phosphorylated nor activated by ROCK. Replacement of Thr-508 by serine changed the ROCK-catalyzed phosphorylation residue from threonine to serine. A LIMK1 mutant with replacement of Thr-508 by two glutamates increased the kinase activity about 2-fold but was not further activated by ROCK. In addition, wild-type LIMK1, but not its T508A mutant, was activated by co-expression with ROCK in cultured cells. These results suggest that ROCK activates LIMK1 in vitro and in vivo by phosphorylation at Thr-508. Together with the recent finding that PAK1, a downstream effector of Rac, also activates LIMK1 by phosphorylation at Thr-508, these results suggest that activation of LIMK1 is one of the common targets for Rho and Rac to reorganize the actin cytoskeleton.  相似文献   

12.
Detection and elimination of virus-infected cells by CD8+ cytotoxic T lymphocytes (CTLs) depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I) molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1), the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8+ T cells in mice. Interestingly, depletion of CD8+ T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8+ T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8+ T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.  相似文献   

13.
Host mitogen-activated protein kinases (MAPKs) are deregulated by herpes simplex virus 1 (HSV-1). Unlike p38 MAPK and Jun N-terminal protein kinase (JNK), which require ICP27 for their activation early in infection, extracellular signal-regulated kinase (ERK) activity is suppressed by an unknown mechanism. Here, we establish that HSV-1-induced suppression of ERK activity requires viral gene expression, occurs with delayed-early kinetics, and requires the functional virus-encoded Us3 Ser/Thr protein kinase. Finally, Us3 expression in uninfected cells was necessary and sufficient to suppress ERK activity in the absence of any other virus-encoded gene products. This demonstrates that inhibition of ERK activity in HSV-1-infected cells is an intrinsic Us3 function and defines a new role for this alphaherpesvirus Us3 kinase in regulating MAPK activation in infected cells.  相似文献   

14.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

15.
Viruses have evolved different strategies to interfere with apoptotic pathways in order to halt cellular responses to infection. The herpes simplex virus 1 (HSV-1) Us3 open-reading frame encodes a serine/threonine protein kinase that participates in the inhibition of apoptosis induced by virus infection and other stress agents. Previous studies have shown that Us3 counteracts the virus-induced activation of caspase-3 by acting at a premitochondrial stage. Using stable transfectants that express Us3 under the control of constitutive or inducible promoters we demonstrate that apoptosis induced by treatment with anti-Fas antibody and sorbitol is blocked when Us3 is expressed at levels comparable to those achieved during virus infection. Expression of Us3 correlated with phosphorylation of Bad, a BH3-only proapoptotic Bcl-2 family member that is also a target for growth factor-induced cellular kinases. Bad was phosphorylated by Us3 in in vitro kination assays. These results point to a strategy for viral inhibition of apoptosis based on functional inactivation of a critical component of the cellular death machinery.  相似文献   

16.
The lytic coliphage T7 encodes a serine/threonine-specific protein kinase which supports viral reproduction under suboptimal growth conditions. Expression of the protein kinase in T7-infected Escherichia coli cells results in the phosphorylation of 30S ribosomal subunit protein S1, and initiation factors IF1, IF2, and IF3, as determined by high-resolution two-dimensional gel electrophoresis and specific immunoprecipitation analysis. Phosphorylation occurs either exclusively on threonine (IF1, IF3, S1) or on serine and threonine (IF2). There is no phosphorylation of these proteins in uninfected cells or in cells infected with T7 lacking the protein kinase function. Phosphorylation of the initiation factors coincides with the onset of T7 late protein synthesis, occurring 9-12-min postinfection. T7 late protein synthesis, otherwise inhibited in ColIb plasmid-containing cells, is specifically supported by expression of the protein kinase. These results provide the first evidence for the functional involvement of protein phosphorylation in the control of bacterial translation.  相似文献   

17.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

18.
The phosphatase and tensin homologue (PTEN) tumor suppressor is a phosphatidylinositol D3-phosphatase that counteracts the effects of phosphatidylinositol 3-kinase and negatively regulates cell growth and survival. PTEN is itself regulated by phosphorylation on multiple serine and threonine residues in its C terminus. Previous work has implicated casein kinase 2 (CK2) as the kinase responsible for this phosphorylation. Here we showed that CK2 does not phosphorylate all sites in PTEN and that glycogen synthase kinase 3beta (GSK3beta) also participates in PTEN phosphorylation. Although CK2 mainly phosphorylated PTEN at Ser-370 and Ser-385, GSK3beta phosphorylated Ser-362 and Thr-366. More importantly, prior phosphorylation of PTEN at Ser-370 by CK2 strongly increased its phosphorylation at Thr-366 by GSK3beta, suggesting that the two may synergize. Using RNA interference, we showed that GSK3 phosphorylates PTEN in intact cells. Finally, PTEN phosphorylation was affected by insulin-like growth factor in intact cells. We concluded that multiple kinases, including CK2 and GSK3beta, participate in PTEN phosphorylation and that GSK3beta may provide feedback regulation of PTEN.  相似文献   

19.
Cot/Tpl2/MAP3K8 is a serine/threonine kinase known to activate the ERK, p38, and JNK kinase pathways. Studies of Tpl2 knock-out mice reveal a clear defect in tumor necrosis factor-alpha production, although very little detail is known about its regulation and the signaling events involved. In the present study we demonstrated that phosphorylation of Cot was required for its maximal activity as phosphatase treatment of Cot decreased its kinase activity. The Cot sequence contains a conserved threonine at position 290 in the activation loop of the kinase domain. We found that mutation of this residue to alanine eliminated its ability to activate MEK/ERK and NF-kappaB pathways, whereas a phosphomimetic mutation to aspartic acid could rescue the ability to activate MEK. Thr-290 was also required for robust autophosphorylation of Cot. Antibody generated to phospho-Thr-290-Cot recognized both wild-type and kinase-dead Cot, suggesting that phosphorylation of Thr-290 did not occur through autophosphorylation but via another kinase. We showed that Cot was constitutively phosphorylated at Thr-290 in transfected human embryonic kidney 293T cells as well as human monocytes as this residue was phosphorylated in unstimulated and lipopolysaccharide-stimulated cells to the same degree. Treatment with herbimycin A inhibited Cot activity in the MEK/ERK pathway but did not inhibit phosphorylation at Thr-290. Together these results showed that phosphorylation of Cot at Thr-290 is necessary but not sufficient for full kinase activity in the MEK/ERK pathway.  相似文献   

20.
Stimulation of RBL-2H3 m1 mast cells through the IgE receptor with antigen, or through a G protein-coupled receptor with carbachol, leads to the rapid appearance of phosphothreonine in nonmuscle myosin heavy chain II-A (NMHC-IIA). We demonstrate that this results from phosphorylation of Thr-1940 by calcium/calmodulin-dependent protein kinase II (CaM kinase II), activated by increased intracellular calcium. The phosphorylation site in rodent NMHC-IIA was localized to the carboxyl terminus of NMHC-IIA distal to the coiled-coil region, and identified as Thr-1940 by site-directed mutagenesis. A fusion protein containing the NMHC-IIA carboxyl terminus was phosphorylated by CaM kinase II in vitro, while mutation of Thr-1940 to Ala eliminated phosphorylation. In contrast to rodents, in humans Thr-1940 is replaced by Ala, and human NMHC-IIA fusion protein was not phosphorylated by CaM kinase II unless Ala-1940 was mutated to Thr. Similarly, co-transfected Ala --> Thr-1940 human NMHC-IIA was phosphorylated by activated CaM kinase II in HeLa cells, while wild type was not. In RBL-2H3 m1 cells, inhibition of CaM kinase II decreased Thr-1940 phosphorylation, and inhibited release of the secretory granule marker hexosaminidase in response to carbachol but not to antigen. These data indicate a role for CaM kinase stimulation and resultant threonine phosphorylation of NMHC-IIA in RBL-2H3 m1 cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号