首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultraviolet absorption and dichroism measurements on oriented films of calf thymus deoxyribonucleic acid (DNA) at varying degrees of hydration show a structural hysteresis which occurs within a relative humidity of 0 to 65% RH. This hysteresis is interpreted on the basis of a model which assumes the existence of structure-stabilizing hydrogen water bridges in the DNA double helix.  相似文献   

2.
目的在适宜的温度和湿度条件下,评价容量滴定法和库伦滴定法测定冻干疫苗水分是否具有差异性。方法确定冻干疫苗水分测定的适宜温度和湿度条件,在此条件下,分别从水分含量区间、冻干疫苗类型和进样量三个主要影响方面,对容量滴定法(volumetric titration)和库伦滴定法(coulometric titration)进行比较。结果冻干疫苗水分测定的适宜条件为:温度25℃、湿度45%。冻干疫苗水分的质量分数为1.0%~2.0%时,容量滴定法和库伦滴定法的检测结果差异有统计学意义(P0.05);水分的质量分数在2.0%~3.0%时,两种滴定法的检测结果差异无统计学意义(P0.05)。对于不同类型冻干疫苗和不同进样量的冻干疫苗,两种滴定法检测结果差异均无统计学意义(P均0.05)。结论在适宜的温度和湿度条件下,库伦滴定法更适用于低水分含量冻干疫苗的水分测定;其他情况下两种滴定法无明显差异。  相似文献   

3.
This study evaluated the efficiency of Karl Fischer titration and coulometry for measurement of water content in small intact and defective cartilage specimens. Cartilage from the main weight-bearing zone of the medial condyle of 38 fresh sheep knees was used. Of these, 20 condyles had an intact cartilage, while defects (14 grade I and 4 grade II) were found in the rest. The mechanical hardness was determined as Shore A. Cartilage specimens of approximately 5 mg were analyzed in special devices for moisture measurement and then continuously heated up to 105 degrees C. The actual measurement was performed in an electric cell (coulometry). An electrode was laminated with hygroscopic phosphorus pentoxide. In the electrochemical reaction, H and O are liberated from the electrode. The requirement for electric energy correlates with the amount of water in the specimen. The water content in intact cartilage was 66.9%. Grade I (72.6%) and grade II (77.8%) defects had significantly higher water content. Significantly higher and faster spontaneous evaporation was observed in cartilage defects at room temperature. The water content and spontaneous water evaporation correlated with significantly lower mechanical hardness. The experimental design (combined method of thermogravimetry, Karl Fischer titration, and coulometry) was sufficient for evaluating the water content in small cartilage specimens. It is also possible to measure the temperature-dependent water liberation from cartilage specimens.  相似文献   

4.
The autodiffusion of water in a multibilayer structure formed by dipalmitoyl phosphatidylcholine and oriented on glass plates was studied by the method of NMR with magnetic field pulse gradient. It was shown that water molecules occur in several states differing in the degree of interaction with lipid molecules. A spectrum of the coefficients of water autodiffusion in a direction transversal to bilayers was found. The use of samples with different distances between the plates and an analysis of the dependence of the mode of diffuse decay of spin echo on diffusion time and the orientation of the sample, as well as measurements at temperatures above and below the gel-liquid crystal phase transition in cholesterol-containing samples enabled one to discriminate the diffuse decay component responsible for the transbilayer movement of water. The coefficient of bilayer permeability was estimated using the Tanner model. It was shown that the formation of mechanical defects ("cracks") in plane oriented bilayers is the most probable reason for the presence of the water component with the relatively high coefficient of diffusion.  相似文献   

5.
We observed low-frequency Raman spectra of tetragonal lysozyme crystals and DNA films, with varying water content of the samples. The spectra are fitted well by sums of relaxation modes and damped harmonic oscillators in the region from approximately 1 cm(-1) to 250 cm(-1). The relaxation modes are due to crystal water, and the distribution of relaxation times is determined. In wet samples, the relaxation time of a small part of the water molecules is a little longer than that of bulk water. The relaxation time of a considerable part of the crystal water, which belongs mainly to the secondary hydration shell, is an order of magnitude longer than that of bulk water. Furthermore, the relaxation time of some water molecules in the primary hydration shell of semidry samples is shorter than we expected. Thus we have shown that low-frequency Raman measurements combined with properly oriented samples can give specific information on the dynamics of hydration water in the ps range. On the other hand, we concluded, based on polarized Raman spectra of lysozyme crystals, that the damped oscillators correspond to essentially intramolecular vibrational modes.  相似文献   

6.
Fast lateral proton conduction was observed along the lipid/water interface using a fluorescence technique. This conduction can be detected for a large number of lipids, both phospholipids and glycolipids. The efficiency of the proton transfer is dependent on the molecular packing of the host lipid at a given surface pressure. The proton conduction which is present in the liquid expanded state is abolished by the transition to the liquid condensed state. The proton transfer is affected slightly by the ionic content of the aqueous subphase except in the case of calcium which can inhibit the conduction along phosphatidylglyceroethanolamine. We suggest that the transfer of the protons occurs along a bidimensional hydrogen-bond network formed from the polar head groups, their water molecules of hydration and the water molecules which are intercalated between the lipid molecules.  相似文献   

7.
The partition of the amphiphile sodium dodecyl sulfate (SDS) between an aqueous solution and a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was followed by isothermal titration calorimetry (ITC) as a function of the total concentration of SDS. It was found that the obtained partition coefficient is strongly affected by the ligand concentration, even after correction for the charge imposed in the bilayer by the bound SDS. The partition coefficient decreased as the total concentration of SDS increased, with this effect being significant for local concentrations of SDS in the lipid bilayer above 5 molar%. At those high local concentrations, the properties of the lipid bilayer are strongly affected, leading to nonideal behavior and concentration-dependent apparent partition coefficients. It is shown that with the modern ITC instruments available, the concentrations of SDS can be drastically reduced while maintaining a good signal-to-noise ratio. The intrinsic parameters of the interaction with unperturbed membranes can be obtained from the asymptotic behavior of the apparent parameters as a function of the ligand concentration for both nonionic and ionic solutes. A detailed analysis is performed, and a spreadsheet is provided to obtain the interaction parameters with and without correction for electrostatics.  相似文献   

8.
Free-standing lipid bilayers in nano- and micro-pores are interesting membrane models and attractive for biotechnological applications. We describe here the controlled preparation of proteo-lipid mono- and bilayers using the Langmuir–Schaefer transfer or Langmuir–Blodgett technique, respectively on hydrophobic and hydrophilic surfaces. We demonstrate the formation of suspended proteo-lipid layers by Transmission Electron Microscopy (TEM) and in situ Atomic Force Microscopy (AFM) imaging. Using Annexin-A5 as a membrane-associated protein, continuous proteo-lipid mono- and bilayers were formed, which span pore arrays over areas of several square-micrometers. The 2D organization of proteins associated to lipid monolayer is well preserved during the transfer process and the protein association is Ca2+-dependent and therefore reversible. The simple formation and reliable transfer of stabilized free-standing lipid films is a first crucial step to create biomimetic membranes for biotechnological applications and membrane protein research.  相似文献   

9.
This study aims to determine if isoprostanes accurately reflect in vivo lipid peroxidation or whether they are influenced by the lipid content of the diet. Isoprostanes were measured in urine of healthy subjects under different conditions of lipid intake and under conditions of oxidative stress (fasting). We found that isoprostanes were not influenced by the lipid content of the diet: the urinary level remained constant over 24 h as well as over 4 consecutive days when switching from high to low lipid intake. Urinary isoprostane excretion was increased by 40% following a 24 h fast. We concluded that urinary isoprostane excretion reflects endogenous lipid peroxidation in vivo.  相似文献   

10.
When hemocyanin is added to a black lipid film, the conductance increases in discrete steps. For negative potentials the single step conductance is constant, but for positive potentials the step conductance appears to decrease as the potential increases. At high positive potentials the conductance fluctuates between several levels. These data suggest that, in lipid membranes, hemocyanin conducts ions through discrete channels. The voltage-dependent conductance observed at high levels of conductance seems to be a consequence of the properties of the conductance of the single channel.  相似文献   

11.
12.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

13.
Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules.  相似文献   

14.
15.
High resolution 2H nuclear magnetic resonance (NMR) was used to investigate the interaction of D2O with solid samples of uniaxially oriented Li-DNA (B-form DNA) and Na-DNA (A- and B-form DNA). At low levels of hydration, 0 approximately 4 D2O/nucleotide, the 2H spectra shows a very weak (due to short T2) broad single resonance, suggestive of unrestricted rotational diffusion of the water. At approximately 5 or more D2O/nucleotide, the Li-DNA (B-form) spectra suddenly exhibit a large doublet splitting, characteristic of partially ordered water. With increasing hydration, the general trend is a decrease of this splitting. From our analysis we show that the DNA water structure reorganizes as the DNA is progressively hydrated. The D2O interaction with Na-DNA is rather different than with Li-DNA. Below 10 D2O/nucleotide Na-DNA is normally expected to be in the A-form, and a small, or negligible splitting is observed. In the range 9-19 D2O/nucleotide, the splitting increases with increasing hydration. Above approximately 20 D2O/nucleotide Na-DNA converts entirely to the B-form and the D2O splittings are then similar to those found in Li-DNA. We show that the complex Na-DNA results obtained in the range 0-20 D2O/nucleotide are caused by a mixture of A- and B-DNA in those samples.  相似文献   

16.
The binding of two mono-acylated lipid monomers by plant lipid transfer proteins (LTP1s) presents an attractive field of research that could help our understanding of the functional role of this protein family. This task has been investigated in the case of barley LTP1 because it is known to exhibit a small cavity in its free state. The titration with lipids could not be followed by fluorescence with the native protein. Indeed, this LTP1 possesses a tyrosine residue on its C-terminus, Tyr91, which is not sensitive to lipid binding but mainly contributes to the fluorescence signal intensity. However, the binding of 1-myristoylglycerophosphatidylcholine (MyrGro-PCho) could be monitored by fluorescence after removal of Tyr91 by a carboxypeptidase. These experiments returned a dissociation constant of about 1 microM and showed that the protein can indeed bind two monomers. This result was corroborated by molecular modelling where the structure of the complex between barley LTP1 and MyrGro-PCho was derived from that determined in the case of wheat [Charvolin, D., Douliez, J.P., Marion, D., Cohen-addad, C. & Pebay-Peyroula, E. (1999) Eur. J. Biochem. 264, 562-568.]. Results from isothermal titration calorimetry experiments indicated non-classic titration behaviour but also suggested that two lipids could be bound by the protein. Finally, barley LTP1 binds two omega-hydroxypalmitic acid, a compound found in the family of cutin monomers. The fact that the binding of two lipids could be related to the physiological role of this protein family is discussed.  相似文献   

17.
Control of lipid membrane stability by cholesterol content   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content.  相似文献   

18.
A colloid titration technique has been used to determine the sulfate and carboxylate content of various glycosaminoglycans and has been validated by comparing the results with data obtained using well-established techniques. The method has been applied to the measurement of the negative charge content of cartilage slices at various depths from the articular surface and to the determination of sulfate and carboxylate contents in bovine nasal septa. Titrations of nasal septa were performed on milled cartilage, on cartilage digested with papain and on proteoglycans purified by cesium chloride gradient centrifugation of guanidinium chloride extracts. The sulfate content was similar for all three preparations (0.5 mu eq per milligram dry cartilage). However, the carboxylate content determined on milled cartilage was 40% higher than that obtained for cartilage digested with papain or for purified proteoglycans; this implies the possible contribution of carboxyl groups from structural glycoproteins present in the extracellular matrix. The carboxylate content determined on purified proteoglycans was in excellent agreement with values calculated from chemical analyses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号