首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The suprachiasmatic nucleus is the primary circadian pacemaker in mammals. In turn, the suprachiasmatic nucleus influences circadian physiology, endocrinology and behavior via the synchronization of local oscillators that are operative in the cells of most organs and tissues. Thus circadian pacemaker may play an important role in psychiatric disorders and in psychotherapeutic drugs effect. In this review, we summarize data about the suprachiasmatic nuclei anatomy, physiology and pharmacological sensitivity.  相似文献   

2.
The mammalian circadian timing system: from gene expression to physiology   总被引:16,自引:0,他引:16  
Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.  相似文献   

3.
In mammals, circadian rhythms are controlled by the neurons located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Each neuron in the SCN contains an autonomous molecular clock. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to achieve phase synchronization. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light-dark cycle in neuronal synchronization. However, in natural conditions, the interaction between the SCN neurons is non-negligible and coupling between cells in the SCN is achieved partly by neurotransmitters. In this paper, we use a model of nonidentical, globally coupled cellular clocks considered as Goodwin oscillators. We mainly study the synchronization induced by coupling from an analytical way. Our results show that the role of the coupling is to enhance the synchronization to the external forcing. The conclusion of this paper can help us better understand the mechanism of circadian rhythm.  相似文献   

4.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal component of the mammalian biological clock, the neural timing system that generates and coordinates a broad spectrum of physiological, endocrine and behavioural circadian rhythms. The pacemaker of the SCN oscillates with a near 24 h period and is entrained to the diurnal light-dark cycle. Consistent with its role in circadian timing, investigations in rodents and non-human primates furthermore suggest that the SCN is the locus of the brain's endogenous calendar, enabling organisms to anticipate seasonal environmental changes. The present review focuses on the neuronal organization and dynamic properties of the biological clock and the means by which it is synchronized with the environmental lighting conditions. It is shown that the functional activity of the biological clock is entrained to the seasonal photic cycle and that photoperiod (day length) may act as an effective zeitgeber. Furthermore, new insights are presented, based on electrophysiological and molecular studies, that the mammalian circadian timing system consists of coupled oscillators and that the clock genes of these oscillators may also function as calendar genes. In summary, there are now strong indications that the neuronal changes and adaptations in mammals that occur in response to a seasonally changing environment are driven by an endogenous circadian clock located in the SCN, and that this neural calendar is reset by the seasonal fluctuations in photoperiod.  相似文献   

5.
The principle clock of mammals, named suprachiasmatic nucleus (SCN), coordinates the circadian rhythms of behavioral and physiological activity to the external 24 h light-dark cycle. In the absence of the daily cycle, the SCN acts as an endogenous clock that regulates the ~24h rhythm of activity. Experimental and theoretical studies usually take the light-dark cycle as a main external influence, and often ignore light pollution as an external influence. However, in modern society, the light pollution such as induced by electrical lighting influences the circadian clock. In the present study, we examined the effect of external noise (light pollution) on the collective behavior of coupled circadian oscillators under constant darkness using a Goodwin model. We found that the external noise plays distinct roles in the network behavior of neurons for weak or strong coupling between the neurons. In the case of strong coupling, the noise reduces the synchronization and the period of the SCN network. Interestingly, in the case of weak coupling, the noise induces a circadian rhythm in the SCN network which is absent in noise-free condition. In addition, the noise increases the synchronization and decreases the period of the SCN network. Our findings may shed new light on the impact of the external noise on the collective behavior of SCN neurons.  相似文献   

6.

Background  

The circadian rhythm in mammals is orchestrated by a central pacemaker in the brain, but most peripheral tissues contain their own intrinsic circadian oscillators. The circadian rhythm is a fundamental biological system in mammals involved in the regulation of various physiological functions such as behavior, cardiovascular functions and energy metabolism. Thus, it is important to understand the correlation between circadian oscillator and physiological functions in peripheral tissues. However, it is still difficult to investigate the molecular oscillator in primary culture cells.  相似文献   

7.
Spontaneous synchronization of coupled circadian oscillators   总被引:1,自引:0,他引:1       下载免费PDF全文
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role. We present a dynamical model for the coupling of a population of circadian oscillators in the SCN. The cellular oscillator, a three-variable model, describes the core negative feedback loop of the circadian clock. The coupling mechanism is incorporated through the global level of neurotransmitter concentration. Global coupling is efficient to synchronize a population of 10,000 cells. Synchronized cells can be entrained by a 24-h light-dark cycle. Simulations of the interaction between two populations representing two regions of the SCN show that the driven population can be phase-leading. Experimentally testable predictions are: 1), phases of individual cells are governed by their intrinsic periods; and 2), efficient synchronization is achieved when the average neurotransmitter concentration would dampen individual oscillators. However, due to the global neurotransmitter oscillation, cells are effectively synchronized.  相似文献   

8.
In mammals, a master circadian pacemaker driving daily rhythms in behavior and physiology resides in the suprachiasmatic nucleus (SCN). The SCN contains multiple circadian oscillators that synchronize to environmental cycles and to each other in vivo. Rhythm production, an intracellular event, depends on more than eight identified genes. The period of the rhythms within the SCN also depends upon intercellular communication. Many other tissues also retain the ability to generate near 24 -h periodicities although their place in the organization of circadian timing is still unclear. This paper focuses on the tissue-, cellular- and molecular-level events that generate and entrain circadian rhythms in behavior in mammals and emphasizes the apparent differences between the SCN and peripheral oscillators.  相似文献   

9.
The circadian timing system in mammals is composed of a master pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus and slave clocks in most peripheral cell types. The phase of peripheral clocks can be completely uncoupled from the SCN pacemaker by restricted feeding. Thus, feeding time, while not affecting the phase of the SCN pacemaker, is a dominant Zeitgeber for peripheral circadian oscillators. Here we show that the phase resetting in peripheral clocks of nocturnal mice is slow when feeding time is changed from night to day and rapid when switched back from day to night. Unexpectedly, the inertia in daytime feeding-induced phase resetting of circadian gene expression in liver and kidney is not an intrinsic property of peripheral oscillators, but is caused by glucocorticoid signaling. Thus, glucocorticoid hormones inhibit the uncoupling of peripheral and central circadian oscillators by altered feeding time.  相似文献   

10.

Background  

Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN) of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure.  相似文献   

11.
12.
13.
The mammalian suprachiasmatic nucleus is the principal component of a neural timing system implicated in the temporal organization of circadian and seasonal processes. The present study was performed to analyze the circadian profiles of two major neuropeptidergic cell groups in the human suprachiasmatic nucleus. To that end the brains of 40 human subjects collected at autopsy were investigated. The populations of arginine vasopressin- and vasoactive intestinal polypeptide-expressing neurons, located in the shell and core of the suprachiasmatic nucleus, respectively, showed marked circadian rhythms with an asymmetrical, bimodal waveform. Time series analysis revealed that these circadian cycles in neuronal activity could be described by a composite model consisting of a nonlinear periodic function, with mono- and diphasic cycles. The findings suggest that the 24-h biosynthesis of neuropeptides in the human suprachiasmatic nucleus, being part of the neural output pathway of the clock, is driven by a complex pacemaker system consisting of coupled nonlinear oscillators, in accordance with a multioscillator model of circadian timekeeping.Abbreviations AIC Akaikie's information criterion - ARMA autoregressive moving average - AVP arginine vasopressin - c-fos immediate early gene - Per period gene - SCN suprachiasmatic nucleus - VIP vasoactive intestinal polypeptide  相似文献   

14.
肾上腺糖皮质激素与生物钟基因表达调控的相关研究进展   总被引:1,自引:0,他引:1  
倪银华  吴涛  王露  夏李群  张丹萍  傅正伟 《遗传》2008,30(2):135-141
由生物体内源性生物钟所产生的昼夜节律是近年来生命科学的研究热点之一。哺乳动物中的昼夜节律系统由位于下丘脑SCN核内的主钟和位于多数外周细胞中的子钟组成。生物钟基因及其编码的蛋白质组成反馈回路,维持振荡系统持续进行并与环境周期保持同步。光照和食物是生物钟重要的授时因子, 光照刺激能引起肾上腺中基因表达变化以及糖皮质激素的分泌, 而肾上腺糖皮质激素能减缓由食物因子引起的外周生物钟时相的移动。可见, 肾上腺糖皮质激素与生物钟有着非常密切的关系。文章综述了两者的相互影响并对今后的研究方向做了展望。  相似文献   

15.
昼夜节律生物钟是以24h为周期的自主维持的振荡器。在高等的多细胞生物中,生物钟可以分为母钟和子钟。研究表明哺乳动物的母钟位于下丘脑视交叉上核(suprachiasmatic nucleus,SCN),由此发出信息控制全身的节律活动;子钟位于组织细胞内,调控效应器的节律。在分子水平上,生物钟的振荡由自身调控反馈环路的转录和翻译组成,并接受外界环境因素的影响,通过下丘脑视叉上核(Suprachiasmatic Nucleus,SCN)中枢震荡器的同步整和而产生作用。视网膜是一种十分节律性的组织,许多生化的、细胞的和生理的过程都是以节律的方式来进行的,如视觉灵敏度、视网膜杆细胞外片层脱落和视网膜色素上皮细胞的吞噬作用、光受体中的视觉色素基因的快速表达等。生物钟存在于很多脊椎动物的视网膜中,被认为是一种外周生物钟。本文综述了视网膜生物钟,生物钟信号传输以及生物钟网络等的最新研究进展。  相似文献   

16.
17.
Circadian regulation of gene expression in animals   总被引:8,自引:0,他引:8  
  相似文献   

18.
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.  相似文献   

19.
Biological rhythms represent a fundamental property of various living organisms. In particular, circadian rhythms, i.e. rhythms with a period close to 24 hours, help organisms to adapt to environmental daily rhythms. Although various factors can entrain or reset rhythms, they persist even in the absence of external timing cue, showing that their generation is endogenous. Indeed, the suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be the main circadian clock in mammals. Isolated SCN neurons have been shown to display circadian rhythms, and in each cell, a set of genes, called "clock genes", are devoted to the generation and regulation of rhythms. Recently, it has become obvious that the clock located in the SCN is not homogenous, but is rather composed of multiple functional components somewhat reminiscent of its neurochemical organization. The significance and implications of these findings are still poorly understood but pave the way for future exciting studies. Here, current knowledge concerning these distinct neuronal populations and the ways through which synchronization could be achieved, as well as the potential role of neuropeptides in both photic and non-photic resetting of the clock, are summarized. Finally, we discuss the role of the SCN within the circadian system, which also includes oscillators located in various tissues and cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号