首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine algal polysaccharides are promising alternative resources to terrestrial biomass. Agarolytic enzymes degrade agarose to various kinds of oligosaccharides. In this study, we expressed miniCbpA, a recombinant scaffolding protein from Clostridium cellulovorans, in Escherichia coli. To assemble the agarolytic complex via cohesin–dockerin interaction, we constructed a chimeric agarase cAgaB from Zobellia galactanivorans containing the catalytic domain of AgaB fused with a dockerin domain from C. cellulovorans EngB. The assembly of functional agarolytic complexes increased the activity against the agar substrate approximately 1.4-fold compared with that for the corresponding enzymes alone. The carbohydrate-binding module (CBM) of miniCbpA was used as a tag for CBM-utilizing one-step purification using cellulose as a support. This is the first report on the formation of agarolytic complexes using the cohesin–dockerin interaction system. The assembly of agar-degrading complexes will lead to the commercial production of useful products from agar biomass at low costs.  相似文献   

2.
Production and characterization of the agarase ofCytophaga flevensis   总被引:1,自引:1,他引:0  
Cytophaga flevensis produced an inducible agarase which was extracellular under most conditions tested. The effect of cultural conditions on the production of enzyme was studied in batch and continuous culture. In batch culture, production was optimal whenCytophaga flevensis was incubated at 20C in a mineral medium with agar as the sole carbon source and ammonium nitrate as the nitrogen source at an initial pH of 6.6–7.0. The enzyme appeared to be subject to catabolite repression, since its synthesis was repressed when glucose was added to the medium in batch culture. Furthermore, in continuous culture, enzyme production decreased with increasing growth rate. Extracellular agarase was partially purified and the enzyme preparation obtained was very stable. The enzyme has a molecular weight of 26000 daltons. It is a β-agarase which is highly specific for polysaccharides containing neoagarobiose units. The final products of hydrolysis of agarose by the endo-acting enzyme were neoagarotetraose and neoagarobiose. Optimal conditions for its activity were pH 6.3 and 30C. When agarose was used as a substrate, an apparent temperature optimum of 35C was found, due to gelling of the substrate during the assay procedure.  相似文献   

3.
Summary An agar-liquefying Acinetobacter species capable of utilizing agar as sole source of carbon and energy was isolated from soil samples and the culture conditions were standardized for the maximal production of extracellular agarase. The bacterium was capable of liquefying an agar-plate within 3 days of incubation and produced extracellular agarase within a short period of time (16–18 h) when grown in defined mineral salts medium. Bacterium grew in the pH range 4.0–9.0, optimal at pH 7.0; temperature 25–40 °C and optimal at 37 °C. The agarase secreted by the Acinetobacter strain was inducible by agar and not repressed by other simple sugars when supplemented along with agar in the medium. The bacterium did not require NaCl for growth or production of agarase. The bacterium did not utilize other polysaccharides like κ-carrageenan, alginate, cellulose, and CMC. The activity staining of partially purified agarase preparations after native-PAGE and SDS PAGE revealed the presence of a single zone of clearance corresponding to the molecular weight 100 kDa, suggesting that it is a monomer. Neoagarobiose was the end product of agarose hydrolysis by this enzyme. The agarase was an endo-type glycosidase and belongs to Group-III β-agarase family.  相似文献   

4.
A marine bacterial strain isolated from the Bay of San Vicente, Chile, was identified as Alteromonas sp. strain C-1. In the presence of agar, this strain produced high levels of an extracellular agarase. The production of agarase was repressed by glucose, with a parallel decrease in bacterial growth. The enzyme was purified to homogeneity by anion-exchange chromatography and gel filtration, with an overall yield of 45%. The enzyme has a molecular weight of 52,000, is salt sensitive, and hydrolyzes agar, yielding neoagarotetraose as the main product, with an optimum pH of about 6.5.  相似文献   

5.
Molecular function of the expansin superfamily has been highlighted for cellulosic biomass conversion. In this report, we identified a new bacterial expansin subfamily by analysis of related bacterial sequences and biochemically examined a member of this new subfamily from Hahella chejuensis (HcEXLX2). Among the various complex polysaccharides tested, HcEXLX2 bound most efficiently to cellulose. The relative binding constant (K r ) against Avicel was 2.1 L g−1 at pH 6.0 and 4°C. HcEXLX2 enhanced the activity of cellulase, producing about 4.6 times more hydrolysis product after a 36 h reaction relative to when only cellulase was used. The extension strength test on filter paper indicated that HcEXLX2 has a texture loosening effect on filter paper, which was 53% of that observed for 8 M urea treatment. These activities, compared with a cellulose binding domain from Clostridium thermocellum, implied that the synergistic effect of HcEXLX2 comes from not only binding to cellulose but also disrupting the hydrogen bonds in cellulose. Based on these results, we suggest that the new bacterial expansin subfamily functions by binding to cell wall polysaccharides and increasing the accessibility of cell wall degrading enzymes.  相似文献   

6.
Agar-degrading bacteria in spinach plant roots cultivated in five soils were screened, and four strains of Paenibacillus sp. were isolated from roots cultivated in three soils. The agar-degrading bacteria accounted for 1.3% to 2.5% of the total bacteria on the roots. In contrast, no agar-degrading colony was detected in any soil (non-rhizosphere soil samples) by the plate dilution method, and thus these agar-degrading bacteria may specifically inhabit plant roots. All isolates produced extracellular agarase, and could grow using agar in the culture medium as the sole carbon source. Zymogram analyses of agarase showed that all four isolates extracellularly secreted multiple agarases (75-160 kDa). In addition, the isolates degraded not only agar but also various plant polysaccharides, i.e., cellulose, pectin, starch, and xylan.  相似文献   

7.
Agar-degrading bacteria in spinach plant roots cultivated in five soils were screened, and four strains of Paenibacillus sp. were isolated from roots cultivated in three soils. The agar-degrading bacteria accounted for 1.3% to 2.5% of the total bacteria on the roots. In contrast, no agar-degrading colony was detected in any soil (non-rhizosphere soil samples) by the plate dilution method, and thus these agar-degrading bacteria may specifically inhabit plant roots. All isolates produced extracellular agarase, and could grow using agar in the culture medium as the sole carbon source. Zymogram analyses of agarase showed that all four isolates extracellularly secreted multiple agarases (75-160 kDa). In addition, the isolates degraded not only agar but also various plant polysaccharides, i.e., cellulose, pectin, starch, and xylan.  相似文献   

8.
Several new crude enzyme preparations were isolated from a marine association of the agarolytic bacterium Cytophaga diffluens and the infusorium Uronema marinum, an axenic culture of Cytophaga diffluens, some species of land micro- and macromycetes adapted to assimilate red algal biomass and from the marine mollusc Littorina littorea. Fungal and mollusc enzyme preparations were shown to have cellulase, xylanase, protease and agarase activities. Fungal agarase activity was revealed only after 3–4 passages of the culture on the medium containing algal biomass. Enzyme preparations from the association and the pure bacterial culture growing on the medium with bactoagar as the sole carbon source contained only agarase activity. The maximum specific agarase activity was found in a preparation from the marine association. The preparations obtained can be used for isolating protoplasts and single cells from red seaweed thalli. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
ABSTRACT

Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.  相似文献   

10.
Effect of medium composition and culture conditions on agarase production by Agarivorans albus YKW-34 was investigated in shake flasks. The most suitable carbon source, nitrogen source, and culture temperature were agar, yeast extract, and 25 °C, respectively, for agarase production by one-factor-at-a-time design. The nutritional components of the medium and culture conditions were analyzed by Plackett–Burman design. Among the nine factors studied, agar, yeast extract, and initial pH had significant effects on agarase production (p < 0.05). The optimum levels of these key variables were further determined using a central composite design. The highest agarase production was obtained in the medium consisting of 0.23% agar and 0.27% yeast extract at initial pH 7.81. The whole optimization strategy enhanced the agarase production from 0.23 U/ml to 0.87 U/ml. The economic medium composition and culture condition as well as the dominant occupation of agarase with high activity in culture fluid enlighten the potential application of A. albus YKW-34 for the production of agarase.  相似文献   

11.
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.  相似文献   

12.
Whitehead LA  Stosz SK  Weiner RM 《Cytobios》2001,106(Z1):99-117
A marine bacterium strain 2-40 (2-40) degraded numerous complex carbohydrates, such as agar, chitin and alginate. It may play an important role in altering carbon fluxes in marine environments. End-product analyses revealed that 2-40 synthesized an agarase system that consisted of at least three enzymes, beta-agarase I, beta-agarase II and alpha-agarase, which acted in concert to degrade polymeric agar to D-galactose and 3,6-anhydro-L-galactose. The agarase system was shown to be both cell envelope-associated and extracellular, with the relative concentrations depending on the growth phase. The principal depolymerase, a beta-agarase I, hydrolysed agar to both neoagarotetrose and neoagarobiose, as identified by thin layer chromatography. This agarase had a mass of 98 kD and a Pi of 4.3. The agarase system was repressed by D-glucose and D-galactose and induced by agar, agarose, neoagarobiose, neoagarotetrose and neoagarohexose.  相似文献   

13.
Summary An agar-degrading bacterium capable of utilizing agar as sole source of carbon and energy was isolated from sea water by enrichment culture technique. The bacterium was identified as Pseudomonas aeruginosa and the culture conditions were standardized for the maximal production of extracellular agarases. The bacterium grew in the pH range 5.0–11.0, optimal between pH 7.0 and 8.0; temperature between 25 °C and 37 °C, optimal at 30 °C and sodium chloride concentration 0–8% and optimal at 2% respectively. The agarases secreted by Pseudomonas aeruginosa AG LSL-11 were inducible by agar and not by any other simple sugars tested. Maximal agarase production was observed at pH 8.0, and temperature 30 °C. The bacterium had no requirement for NaCl for both growth and production of agarases. The bacterium did not utilize other polysaccharides like ĸ-carrageenan, alginate, cellulose and CMC. The activity staining of partially purified agarase preparation after native-PAGE revealed the presence of three different agarases, agarase LSL-11a, LSL-11b and LSL-11c, whose molecular weights were estimated to be 76, 64 and 46 kDa respectively.  相似文献   

14.
Microbulbifer strain CMC-5 was isolated from decomposing seaweeds, and was found to degrade agar, alginate, carboxymethyl cellulose, carrageenan, xylan, and chitin. The extracellular agarase enzyme from strain CMC-5 was purified 103-fold by ultrafiltration, ion-exchange chromatography, using diethylaminoethyl sepharose FF, and gel filtration, using sephacryl S-300HR, with a yield of 6.7%. Zymogram and protein staining of the purified agarase on a SDS-polyacrylamide gel revealed a single band, with an apparent molecular weight of 59 kDa. The purified enzyme was endo-type β-agarase, as it was able to hydrolyze the β-1, 4 glycosidic linkages of agarose, releasing neoagarotetraose and neoagarohexaose as the end products. The optimum pH and temperature of agarase were 7 and 50°C, respectively. Thermal stability studies indicated that the agarase retained 62% of its activity after incubating at 50°C for 30 min. Treatment with EDTA reduced the agarase activity by 54%. The agarase activity was stimulated by the presence of Ca2+ and Mg2+ ions; whereas, Zn2+, Hg2+, Cu2+, Fe2+, and Co2+ abolished the activity. Further, the presence of NaCl at concentrations lower than 100 mM caused a decrease in the agarase activity; whereas, the activity was enhanced up to a concentration of 500 mM.  相似文献   

15.
The agar degrading bacterial strain GNUM-08124 was isolated from Enteromorpha compressa collected in the East Sea of Korea by using a selective artificial sea water (ASW) agar plate containing agar as the sole carbon source. GNUM-08124 grows to produce a circular, smooth, yellow-colored, and raised colony. Its ability to hydrolyze agar was confirmed by staining the ASW agar plate with Lugol’s solution. In liquid culture, the cell density (A600) increased exponentially and reached a maximum level on the third day of cultivation. The specific agarase activity also increased in proportion to the cell density and reached maximum agarolytic activity on the third day. The 16S rRNA sequence of GNUM-08124 showed a close relationship to Micrococcus luteus (99.65%) and Micrococcus endophyticus (99.15%), which led us to assign it to the genus Micrococcus. Physiological studies indicated that optimal growth conditions were between 30 and 40°C, pH 4 and 7, using media containing between 5 and 10% NaCl (w/v), respectively. The GNUM-08124 strain was a grampositive, urease-positive, and catalase-positive bacterium. It could not hydrolyze gelatin, cellulose, xylan, or starch, but fermented a broader range of substrates, including Dglucose, D-galactose, D-fructose, D-lactose, D-trehalose, D-mannitol, D-melibiose, D-raffinose, D-xylose, methyl-α-D-glucopyranoside, N-acetyl-glucosamine, and xylitol, than those fermented by M. luteus or M. endophyticus, suggesting GNUM-08124 is a novel agar hydrolyzing microorganism belonging to Genus Micrococcus. Micrococcus sp. GNUM-08124 showed the highest agarase activity when it was cultured in ASW-YP medium supplemented with 0.4% glucose, but demonstrated lower activity in rich media (LB or TSB), in spite of superior cell growth, implying that agarase production is tightly regulated in an agar-dependent manner and repressed in rich conditions.  相似文献   

16.
The phenotypic and agarolytic features of an unidentified marine bacteria isolated from the southern ocean of China was studied. The strain was gram-negative, aerobic, and polarly flagellated. It was identified as the genus Alteromonas according to its morphological and physiological characterization. In solid agar, the isolate produced a diffusible agarase that caused agar softening around the colonies. An extracellular agarase was purified by the procedure of ammonium sulfate precipitation, gel filtration on Sephacryl S-100HR, and ion-exchange chromatography on diethylaminoethyl-Sepharose. The purified protein exhibited a single band on SDS-PAGE with a molecular mass of 39.5 kDa. The enzyme hydrolyzed the β-1,4-glycosidic linkages of agar, yielding neoagarotetraose and neoagarohexaose as the main products. The optimum reaction temperature of the agarase was 35°C, with a narrow range from 30 to 45 °C. The enzyme activity reached the maximum at pH 7.0 and in the presence of 2% NaCl. Molecular mass and degrading products showed that the agarase from Alteromonas sp. SY 37-12 was much different from those previously reported.  相似文献   

17.
Feng Z  Peng L  Chen M  Li M 《Folia microbiologica》2012,57(5):379-386
An agar-degrading bacterium, Rhodococcus sp. Q5, was isolated from printing and dyeing wastewater using a mineral salts agar plate containing agar as the sole carbon source. The bacterium grew from pH 4.0 to 9.0, from 15 to 35°C, and in NaCl concentrations of 0–5 %; optimal values were pH 6.0, 30°C, and 1 % NaCl. Maximal agarase production was observed at pH 6.0 and 30°C. The bacterium did not require NaCl for growth or agarase production. The agarase secreted by Q5 was inducible by agar and was repressed by all simple sugars tested except lactose. Strain Q5 could hydrolyze starch but not cellulose or carboxymethyl cellulose. Agarase activity could also be detected in the medium when lactose or starch was the sole source of carbon and energy. Strain Q5 could grow in nitrogen-free mineral media; an organic nitrogen source was more effective than inorganic carbon sources for growth and agarase production. Addition of more organic nitrogen (peptone) to the medium corresponded with reduced agarase activity.  相似文献   

18.
A comparative study of the structure and properties of the sulfated polysaccharides (carrageenans) isolated from the vegetative and reproductive forms of the red alga Tichocarpus crinitus was performed. The polysaccharides were separated into the gelling (KCl-insoluble) and non-gelling (KCl-soluble) fractions by precipitation with 4% KCl. The total content of polysaccharides extracted from the reproductive form of the alga was 1.8-fold more than that extracted from the vegetative form, and in the first case, the gelling polysaccharides mostly accumulated. The gelling polysaccharides from the vegetative form have the highest molecular weight (354 kD). According to the results of FT-IR and 13C-NMR spectroscopy, the gelling polysaccharide fractions from both forms are kappa/beta carrageenans. The differences concern the content of the kappa- and beta-disaccharide units and the presence of a small content of the sulfated disaccharide segments (precursors of the kappa-carrageenans) in the polysaccharide from the reproductive form of the alga. The non-gelling polysaccharide fractions from both forms of the plant are mixtures of sulfated galactans with a low content of 3,6-anhydrogalactose.  相似文献   

19.
The production of agar-oligosaccharides from agarose by free and immobilized agarase, obtained from a Pseudomonas aeruginosa AG LSL-11 was investigated and the activity, longevity and the operational stability of immobilized enzyme was compared with that of the free enzyme. The agar hydrolyzed products of free enzyme and immobilized enzyme were neoagarobiose, neoagarotetraose and neoagarohexaose as evidenced by LC-MS analysis. The immobilization of agarase was confirmed by SEM and also by the enzymatic transformation of agarose into agaroligosaccharides. The free agarase showed maximum activity at 40°C, whereas it’s immobilized counterpart showed maximum activity at 45oC, however, the optimum pH for both systems remained unchanged (pH 8.0). The relative activities of free agarase at pH 9.0 and 10.0 were 90 and 74%, respectively, whereas, the corresponding activities of the immobilized system were determined to be 97 and 90%. The stabilities of free agarase at pH 9.0 and 10.0 were 80 and 60% respectively, but for the immobilized system the respective residual activities were estimated to be 97 and 85%. Immobilized agarase appears to be more tolerant to high temperatures in terms of its activity and stability as it is compared to that of the free enzyme which retained 74 and 50.84% of relative activity at 55 and 60°C while, free agarase retained only 40 and 16.79% of its original activity. Furthermore, the immobilized agarase could be reused in batches efficiently for eight cycles, and could be stored for 3 months at 4°C as wet beads and for more than 6 months as dry beads.  相似文献   

20.
Penicillium commune, Aureobasidium pullulans, and Paecilomyces farinosus were grown on two different media solidified with agar, Pluronic F-127, Carrageenan X-4910, or Carrageenan X-4910 overlaid with cellophane. Growth on Carrageenan X-4910 was generally the same as that on agar, as was the visual appearance of the colonies, e.g., the pigmentation. The Carrageenan X-4910 gels had a melting point, depending on the medium, of 41 to 46(deg)C, and the dry weights of the colonies were readily determined at 60(deg)C. To determine the dry weights of the colonies grown on agar plates, the gels were boiled for 10 min to melt the agar. Comparison of these two procedures showed that the boiling procedure resulted in a 22% reduction of the biomass dry weight. Cellophane membranes did not affect the radial growth rate profoundly. The biomass density was almost halved for P. commune and P. farinosus grown with membranes, whereas the presence of the membrane did not affect the biomass density of A. pullulans. The biomass densities of the colonies grown on Pluronic F-127 were significantly reduced, while in most cases, the radial growth rates of colonies grown on Pluronic F-127 were significantly higher than those obtained on agar or Carrageenan X-4910. Furthermore, the morphology of the leading hyphae was altered, and the hyphal growth unit length was more than twice that obtained on agar and Carrageenan X-4910. Carrageenan X-4910 is a valuable gelling compound for the study of the growth of fungi, as the biomass dry weight is readily determined and growth is similar to that obtained on agar gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号