首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谷胱甘肽磷脂氢过氧化物酶研究进展   总被引:2,自引:0,他引:2  
谷胱甘肽磷脂氢过氧化物酶(PHGPx)是生物体内一种重要的抗氧化酶。它是一种硒依赖性蛋白,在谷胱甘肽(GSH)的参与下能特异性地还原磷脂氢过氧化物(PLOOH)和胆固醇氢过氧化物(ChOOH),从而保护生物膜免受过氧化损伤。它还是核酸等生物大分子的重要保护剂,并且在细胞凋亡调控中发挥作用。  相似文献   

2.
The citrus phospholipid hydroperoxide glutathione peroxidase (cit-PHGPx) was the first plant peroxidase demonstrated to exhibit PHGPx-specific enzymatic activity, although it was 500-fold weaker than that of the pig heart analog. This relatively low activity is accounted for the catalytic residue of cit-PHGPx, which was found to be cysteine and not the rare selenocysteine (Sec) present in animal enzymes. Sec incorporation into proteins is encoded by a UGA codon, usually a STOP codon, which, in prokaryotes, is suppressed by an adjacent downstream mRNA stem-loop structure, the Sec insertion sequence (SECIS). By performing appropriate nucleotide substitutions into the gene encoding cit-PHGPx, we introduced bacterial-type SECIS elements that afforded the substitution of the catalytic Cys(41) by Sec, as established by mass spectrometry, while preserving the functional integrity of the peroxidase. The recombinant enzyme, whose synthesis is selenium-dependent, displayed a 4-fold enhanced peroxidase activity as compared with the Cys-containing analog, thus confirming the higher catalytic power of Sec compared with Cys in cit-PHGPx active site. The study led also to refinement of the minimal sequence requirements of the bacterial-type SECIS, and, for the first time, to the heterologous expression in Escherichia coli of a eukaryotic selenoprotein containing a SECIS in its open reading frame.  相似文献   

3.
4.
The redox enzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) has emerged as one of the most significant selenoenzymes in mammals, corroborated by early embryonic lethality of PHGPx null mice. PHGPx is one of five selenium-dependent glutathione peroxidases and the second glutathione peroxidase to be discovered in 1982. PHGPx has a particular position within this family owing to its peculiar structural and catalytic properties, its multifaceted roles during male gametogenesis, and its necessity for early mouse development. Interestingly, mice devoid of endogenous glutathione die at the same embryonic stage as PHGPx-deficient mice compatible with the hypothesis that a similar phenotype of embryonic lethality may be provoked by PHGPx deficiency and lack of its reducing substrate glutathione. Various gain- and loss-of-function approaches in mice have provided some insights into the physiological functions of PHGPx. These include a protective role for PHGPx in response to irradiation, increased resistance of transgenic PHGPx mice to toxin-induced liver damage, a putative role in various steps of embryogenesis, and a contribution to sperm chromatin condensation. The expression of three forms of PHGPx and early embryonic lethality call for more specific studies, such as tissue-specific disruption of PHGPx, to precisely understand the contribution of PHGPx to mammalian physiology and under pathological conditions.  相似文献   

5.
6.
7.
8.
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a selenocysteine-containing enzyme, and three different isoforms (cytosolic, mitochondrial, and nuclear) originate from the GPx4 gene. Homozygous GPx4-deficient mice die in utero at midgestation, since they fail to initiate gastrulation and do not develop embryonic cavities. To investigate the biological basis for embryonic lethality, we first explored expression of the GPx4 in adult murine brain and found expression of the protein in cerebral neurons. Next, we profiled mRNA expression during the time course of embryogenesis (embryonic days 6.5-17.5 (E6.5-17.5)) and detected mitochondrial and cytosolic mRNA species at high concentrations. In contrast, the nuclear isoform was only expressed in small amounts. Cytosolic GPx4 mRNA was present at constant levels (about 100 copies per 1000 copies of glyceraldehyde-3-phosphate dehydrogenase mRNA), whereas nuclear and mitochondrial isoforms were down-regulated between E14.5 and E17.5. In situ hybridization indicated expression of GPx4 isoforms in all developing germ layers during gastrulation and in the somite stage in the developing central nervous system and in the heart. When we silenced expression of GPx4 isoforms during in vitro embryogenesis using short interfering RNA technology, we observed that knockdown of mitochondrial GPx4 strongly impaired segmentation of rhombomeres 5 and 6 during hindbrain development and induced cerebral apoptosis. In contrast, silencing expression of the nuclear isoform led to retardations in atrium formation. Taken together, our data indicate specific expression of GPx4 isoforms in embryonic brain and heart and strongly suggest a role of this enzyme in organogenesis. These findings may explain in part intrauterine lethality of GPx4 knock-out mice.  相似文献   

9.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

10.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an ubiquitous antioxidant enzyme, but the exact expression pattern in mammalian tissues is still unknown. The expression and cellular localization of PHGPx mRNA were examined in male mice using real time-polymerase chain reaction and in situ hybridization techniques. The rank order of PHGPx mRNA expression across tissues exhibiting substantial levels of expression was:testes ≫ heart > cerebrum ≥ ileum > stomach = liver = jejunum ≥ epididymis. In testes, PHGPx mRNA was highly expressed in spermiogenic cells and Leydig cells. The signal was also expressed in the molecular layer, Purkinje cell layer, and white matter of cerebellum, the pituicytes of neurohypophysis, the parafollicular cells and follicular basement membrane of thyroid, the exocrine portion of pancreas, the tubular epithelium of kidney, the smooth muscle cells of arteries, and the red pulp of spleen. In the gastrointestinal tract, PHGPx mRNA expression was mainly observed in the keratinized surface epithelium of forestomach, the submucosal glands and serosa layers, and further the Paneth cells of intestines. PHGPx mRNA appeared to be ubiquitously expressed in the parenchyma of heart, liver, and lung. These results indicate that PHGPx exhibits a cell- and tissue-specific expression pattern in mice.  相似文献   

11.
A cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase (PHGPX) was isolated from rice using rapid amplification of cDNA ends. This cDNA, designated ricPHGPX, includes an open reading frame encoding a protein of 169 amino acids which shares about 60% and 50% amino acid sequence identity with plant and mammalian PHGPXs, respectively. The gene is expressed at a relative high level in flag leaves and the expression can be markedly induced by oxidative stress, suggesting that the product of the gene plays a key role in defense against oxidative damage in rice.  相似文献   

12.
Antigenic cross-linking of the high affinity IgE receptors on mast cells induced the synthesis of prostaglandin D(2) (PGD(2)). The production of PGD(2) in L9 cells, which overexpressed non-mitochondrial phospholipid glutathione peroxidase (PHGPx), was only one-third that in the control line of cells (S1 cells). The reduction in the formation of PGD(2) in L9 cells was reversed upon inhibition of PHGPx activity by buthionine sulfoximine. Experiments with inhibitors demonstrated that prostaglandin H synthase-2 (PGHS-2) was the isozyme responsible for the production of PGD(2) upon cross-linking of IgE receptors. The conversion of radiolabeled arachidonic acid to prostaglandin H(2) (PGH(2)) was strongly inhibited in L9 cells, whereas the rate of conversion of PGH(2) to PGD(2) was the same in L9 cells and S1 cells, indicating that PGHS was inactivated in L9 cells. The PGHS activity in L9 cells was about half that in S1 cells. However, PGHS activity in L9 cells increased to the level in S1 cells upon the addition of the hydroperoxide 15-hydroperoxyeicosatetraenoic acid or of 3-chloroperoxybenzoic acid. These results suggest that non-mitochondrial PHGPx might be involved in the inactivation of PGHS-2 in nucleus and endoplasmic reticulum via reductions in levels of the hydroperoxides that are required for full activation of PGHS. Therefore, it appears that PHGPx might function as a modulator of the production of prostanoids, in addition to its role as an antioxidant enzyme.  相似文献   

13.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an unique antioxidant enzyme that directly reduces lipid hydroperoxides in biomembranes. In the present work, the entire encoding region for Oryza sativa PHGPx was expressed in Escherichia coli M15, and the purified fusion protein showed a single band with 21.0 kD and pI = 8.5 on SDS- and IFE-PAGE, respectively. Judging from CD and fluorescence spectroscopy, this protein is considered to have a well-ordered structure with 12.2% alpha-helix, 30.7% beta-sheet, 18.5% gamma-turn, and 38.5% random coil. The optimum pH and temperature of the enzyme activity were pH 9.3 and 27 degrees C. The enzyme exhibited the highest affinity and catalytical efficiency to phospholipid hydroperoxide employing GSH or Trx as electron donor. Moreover, the protein displayed higher GSH-dependent activity towards t-Butyl-OOH and H(2)O(2). These results show that OsPHGPx is an enzyme with broad specificity for hydroperoxide substrates and yielded significant insight into the physicochemical properties and the dynamics of OsPHGPx.  相似文献   

14.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

15.
16.
The partially purified phospholipid hydroperoxide glutathione peroxidase (PHGPx) from A431 cells was used to systematically compare the inhibitory effect on the enzyme activity of various lipoxygenases and cyclooxygenases. Under the standard assay system, platelet 12-lipoxygenase, 15-lipoxygenase, and cyclooxygenase-2 were the most sensitive to the inhibition by PHGPx. 5-Lipoxygenase and cyclooxygenase-1 were less sensitive to the inhibition by PHGPx than platelet 12-lipoxygenase and cyclooxygenase-2, respectively, and the difference was approximately 10-fold. Reduction of 12(S)-hydroperoxyeicosatetraenoic acid to 12(S)-hydroxyeicosatetraenoic acid by PHGPx was observed in the presence of glutathione (GSH), and the inhibitory effect of PHGPx on 12-lipoxygenase-catalyzed arachidonate metabolism was reversed by the addition of exogenous lipid hydroperoxide. The results indicate that PHGPx directly reduced lipid hydroperoxides and then down-regulated the activity of arachidonate oxygenases. Moreover, a high-level expression of PHGPx mRNA and its 12-lipoxygenase-inhibitory activity was observed in cancer cells and endothelial cells, and these results suggest that PHGPx may play a significant role in the regulation of reactive oxygen species formation in these cells.  相似文献   

17.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) is regarded as the major molecular target of selenodeficiency in rodents, accounting for most of the histopathological and structural abnormalities of testicular tissue and male germ cells. PHGPx exists as a cytosolic form, mitochondrial form, and nuclear form (nPHGPx) predominantly expressed in late spermatids and spermatozoa. Here, we demonstrate that mice with a targeted deletion of the nPHGPx gene were, unlike mice with the full knockout (KO) of PHGPx, not only viable but also, surprisingly, fully fertile. While both morphological analysis of testis and epididymis and sperm parameter measurements did not show any apparent abnormality, toluidine blue and acridine orange stainings of spermatozoa indicated defective chromatin condensation in the KO sperm isolated from the caput epididymis. Furthermore, upon drying and hydrating, KO sperm exhibited a significant proportion of morphologically abnormal heads. Monobromobimane labeling and protein-free thiol titration revealed significantly less extensive oxidation in the cauda epididymis when compared to that in the wild type. We conclude that nPHGPx, by acting as a protein thiol peroxidase in vivo, contributes to the structural stability of sperm chromatin.  相似文献   

18.
19.
Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.  相似文献   

20.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx), a selenium-dependent glutathione peroxidase, can interact with lipophilic substrates, including phospholipid hydroperoxides, fatty acid hydroperoxides and cholesterol hydroperoxides, and can reduce them to hydroxide compounds. It also seems to be a major regulator of lipid oxygenation in human epidermoid carcinoma A431 cells. In order to study the functional role of PHGPx in the regulation of 12-lipoxygenase and cyclooxygenase, cDNA of PHGPx was inserted into pcDNA3.1/His, and a plasmid designated as S4 with the His-tag sequence inserted between PHGPx and its 3'-untranslated region was constructed. A number of stable transfectants of A431 cells that could express the tag-PHGPx were generated using plasmid S4. Using an intact cell assay system, the metabolism of arachidonic acid to prostaglandin E(2) significantly decreased in stable transfectants of overexpressing PHGPx compared to that in a vector control cell line. If the intact cell assay was carried out in the presence of 13-hydroperoxyoctadecadienoic acid as a stimulator of lipid peroxidation, formation of 12-hydroxyeicosatetraenoic acid from arachidonic acid also significantly decreased in stable transfectants of overexpressing PHGPx compared to that in a vector control cell line, indicating that PHGPx could downregulate the 12-lipoxygenase activity in cells. These results support the hypothesis that PHGPx plays a pivotal role in the regulation of arachidonate metabolism in A431 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号