首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Experiments are reported which were designed to test for induced synthesis of microtubule proteins associated with the rapid proliferation of basal bodies and associated intracytoplasmic microtubules which occurs during oral replacement in Tetrahymena. None was found. Instead, it is shown that these structures can be formed with de novo synthesis of as little as 6% of their microtubule proteins. It is suggested that basal body proliferation may be controlled by synthesis of morphogenetic regulator proteins.  相似文献   

2.
CILIA REGENERATION IN TETRAHYMENA AND ITS INHIBITION BY COLCHICINE   总被引:27,自引:18,他引:9       下载免费PDF全文
The cilia of Tetrahymena were amputated by the use of a procedure in which the cells remained viable and regenerated cilia. Deciliated cells were nonmotile, and cilia regeneration was assessed by scoring the percentage of motile cells at intervals following deciliation. After a 30-min lag, the deciliated cells rapidly recovered motility until more than 90% of the cells were motile at 70 min after amputation. Cycloheximide inhibited both protein synthesis and cilia regeneration. This indicated that cilia formation in Tetrahymena was dependent on protein synthesis after amputation. Conversely, colchicine was found to inhibit cilia regeneration without affecting either RNA or protein synthesis. This observation suggested the action of colchicine to be an interference with the assembly of ciliary subunit proteins. The finding that colchicine binds to microtubule protein subunits isolated from cilia and flagella (13) supports this possibility. The potential of the colchicine-blocked cilia-regenerating system in Tetrahymena for studying the assembly of microtubule protein subunits during cilia formation and for isolating ciliary precursor proteins is discussed.  相似文献   

3.
There is a complex system of 2- to 5-nm filaments in the oral apparatus of Tetrahymena. Four major subunit proteins, called tetrins, have been isolated from the filaments. These proteins, showing apparent molecular weights in polyacrylamide gels of 79-89 kDa, will assemble in vitro into 2- to 5-nm filaments. Tetrin filaments in vivo show different packing arrangements in different regions of the oral apparatus. We sought to determine the distributions of tetrin polypeptides within the complex oral structure by obtaining monoclonal antibodies specific for individual tetrins, then mapping their distributions within the oral apparatus using standard fluorescence microscopy, confocal laser scanning fluorescence microscopy, and electron microscopy. The results indicate that the four tetrin polypeptides are colocalized everywhere within the oral apparatus of Tetrahymena. Tetrin-binding proteins or specific nucleating structures may need to be invoked to explain the complex organization of the tetrin network. The 16 monoclonal antibodies obtained were also used to search for evidence of immunological relationships between tetrin and cytoskeletal proteins in multicellular organisms. None was found.  相似文献   

4.
ABSTRACT. Extraction of the ciliated protozoon Tetrahymena with nonionic detergents produces a surface-related cytoskeleton that consists of a basic lamina of whole-cell dimensions together with associated microtubule and microfilament systems, including all ciliary basal bodies. The organization of the isolated cytoskeleton has been studied using scanning electron microscopy, and several new features are described in the oral region. Here the ciliary basal bodies are arranged in a very stable and highly complex pattern. This pattern was found to be identical in the four species of Tetrahymena we examined. In addition, various microtubular bundles and two separate systems of filaments were observed in scanning electron micrographs of isolated oral skeletons. The appearance of the deep fiber bundle in preparations of this type suggests that it arises, at least in part, as an extension of the ribbed wall microtubules. On the basis of its distribution within the oral skeleton, one of the filament systems described is suggested to be a contractile system responsible for pinching off food vacuoles.  相似文献   

5.
A rabbit antiserum specific for Tetrahymena calmodulin was prepared and characterized: In Ouchterlony's immunodiffusion test, the antiserum gave rise to a single precipitin line only with calmodulin in the reaction with crude Tetrahymena extract and the antiserum cross-reacted with a calmodulin fraction from Paramecium, but not with several calmodulin fractions, from higher organisms. Calmodulins from the ciliates appear to share some antigenic determinants which are absent in calmodulins from higher organisms. The intracellular localization of calmodulin was investigated by indirect immunofluorescent method using anti-Tetrahymena calmodulin antibody purified on an antigen-Sepharose affinity column. Immunofluorescence was localized in the oral apparatus, cilia, basal bodies, the anterior end of the cell, and the contractile vacuole pores. The localization suggested involvement of calmodulin in food vacuole formation (nutrient uptake), excretion of contractile vacuole contents (regulation of osmotic pressure), and in ciliary movement (reversal). The suggestion was supported by the observation that trifluoperazine markedly suppressed food vacuole formation and excretion of contractile vacuole contents and affected the ciliary motion.  相似文献   

6.
Attempts were made to elucidate whether or not microtubules within cilia, oral apparatus and macronuclei in Tetrahymena pyriformis include common proteins, by making use of antiserum to microtubule proteins of cilia. The microtubule fraction containing two protein components was used as antigen and the antiserum to the microtubule proteins was proved to be specific by analysing electrophoretic patterns in the antigen absorption experiments. The antiserum reacted with the dissolved proteins of isolated oral apparatus or macronuclei, forming precipitin lines common to those of cilia. Furthermore, the two organelles were positively stained with the fluorescein-labelled antiserum. These results offered important clues to understand multifariousness in function and behavior of morphologically identical microtubules; that is, various microtubules in the cell appear to include a common protein(s) one another.  相似文献   

7.
A new fiber-forming protein from Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
A new fiber-forming protein was isolated from the acetone powder of Tetrahymena pyriformis by co-precipitating with skeletal muscle myosin while trials were made to find actin or actin-like protein in Tetrahymena. It has a molecular weight of 38000 D and forms a tetramer (140000 D, 9 S) in physiological conditions. Its isoelectric point (pH 6.7), amino acid composition and antigenic determinant(s) differ significantly from those of non-muscle actin and skeletal muscle actin. It does not undergo G-F conversion while actin does, and does not activate Mg2+-ATPase of skeletal muscle myosin. The protein localizes in the oral apparatus and division furrow as revealed by fluorescent antibody method. The protein can be assembled into 14-nm filaments in a reassembly buffer. The in vitro filaments appear to correspond to some filaments included in the oral apparatus and the contractile ring. The fiber-forming protein from Tetrahymena may play important roles in cell motility including cell division.  相似文献   

8.
SYNTHESIS AND STORAGE OF MICROTUBULE PROTEINS BY SEA URCHIN EMBRYOS   总被引:12,自引:7,他引:5       下载免费PDF全文
Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified.  相似文献   

9.
The Golgi protein GM130 regulates centrosome morphology and function   总被引:5,自引:0,他引:5  
The Golgi apparatus (GA) of mammalian cells is positioned in the vicinity of the centrosome, the major microtubule organizing center of the cell. The significance of this physical proximity for organelle function and cell cycle progression is only beginning to being understood. We have identified a novel function for the GA protein, GM130, in the regulation of centrosome morphology, position and function during interphase. RNA interference-mediated depletion of GM130 from five human cell lines revealed abnormal interphase centrosomes that were mispositioned and defective with respect to microtubule organization and cell migration. When GM130-depleted cells entered mitosis, they formed multipolar spindles, arrested in metaphase, and died. We also detected aberrant centrosomes during interphase and multipolar spindles during mitosis in ldlG cells, which do not contain detectable GM130. Although GA proteins have been described to regulate mitotic centrosomes and spindle formation, this is the first report of a role for a GA protein in the regulation of centrosomes during interphase.  相似文献   

10.
The expression and intracellular localization of the Tetrahymena homolog of 4-hydroxyphenylpyruvate dioxygenase (HPPD) were investigated in wild-type Tetrahymena thermophila strain B1868 VII and the mutant strains IIG8, defective in food vacuole formation, MS-1, blocked in secretion of lysosomal enzymes, and SB 281, defective in mucocyst maturation. Immunoelectron microscopy and confocal laser scanning microscopy demonstrated that Tetrahymena HPPD primarily localized to membranes of the endoplasmic reticulum. In addition, Tetrahymena HPPD was detected in association with membranes of the Golgi apparatus, and transport vesicles in exponentially growing wild-type and mutant strains. In starved cells, Tetrahymena HPPD localized exclusively to membranes of small vesicles. Since no de novo synthesis ofTetrahymena HPPD takes place in cells starved for more than 30min, these results suggest that there is a flow ofTetrahymena HPPD from the endoplasmic reticulum to small vesicles, possibly via the Golgi apparatus, and thatTetrahymena HPPD contains a signal for vesicle membrane retrieval or retention.  相似文献   

11.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

12.
SYNOPSIS. Pellicles of the ciliate Tetrahymena pyriformis strain GL (phenoset A) were isolated by a new procedure. Oral apparatuses were also purified by a modification of a previous method. Both preparations were characterized by electron microscopy. Proteins of the isolates were separated by analytical SDS polyacrylamide gel electrophoresis. The isolated pellicles, which included oral apparatuses, contained only 6 major proteins (gel bands), designated A through F. Bands A, B, and C, were found in the pellicle fraction, but not in the oral apparatus fraction. Therefore, these proteins are believed to be present in the somatic cortex of Tetrahymena. Bands D and E were greatly enriched in the oral apparatus fraction; these proteins are therefore believed to be present primarily in the oral apparatus. Band F, identified as tubulin, was present in both preparations. Molecular weight determinations and some selective solubilization experiments are also presented.  相似文献   

13.
MICROTUBULE PROTEIN DURING CILIOGENESIS IN THE MOUSE OVIDUCT   总被引:3,自引:3,他引:0       下载免费PDF全文
A colchicine-binding assay and quantitative sodium dodecyl sulfate gel electrophoresis have been used to determine the changes which occur in microtubule protein (tubulin) concentrations in the particulate and soluble fractions of mouse oviduct homogenates during that period of development when centriole formation and cilium formation are at a maximum. When mouse oviducts, at various ages after birth, are homogenized in Tris-sucrose buffer, tubulin concentration is partitioned between the soluble (70%) and particulate (30%) fractions. During the period of most active organelle formation (3–12 days), there is a marked increase in colchicine-binding specific activity, in both the soluble and particulate fractions. Microtubule protein concentration increases from 16 to 24% in the soluble fraction, declining to 14% in the adult. In the particulate fractions, microtubule protein concentration increases from 16 to 27%, leveling off at 16% in the adult. We have concluded from these observations and from electron microscopy that colchicine-binding activity in the particulate fractions is related to the presence of centriole precursors in the pellets of homogenized oviducts from newborn mice. These data further suggest that centriole precursor structures are conveniently packaged aggregates of microtubule protein actively synthesized between 3 and 5 days, and maintained at a maximum during the most active period of organelle assembly.  相似文献   

14.
A method is described for the quantitation of the pool size of a tubulin like protein during synchronized cell division in the sea urchin Lytechinus variegatus. The method involves the use of a thin SDS slab polyacrylamide gel system in which tubulin can be quantitated in the submicrogram range. Employing a microtubule stabilization buffer, the intact tubule fraction was removed and the soluble tubulin pool was quantitated with this gel system. Amino acid incorporation into this protein was also quantitated. The resulting specific activity values and values for the amount of tubulin-like protein present in the pool fraction suggested that the tubulin pool decreases at fertilization and then remains constant through the first cell cycle. Tubulin synthesis, however, steadily increased after fertilization and then decreased dramatically just prior to mitotic apparatus formation. No change in tubulin pool size was observed at the time of peak mitotic apparatus formation. These results are discussed in terms of the regulation of microtubule function.  相似文献   

15.
16.
The protein composition of the oral apparatus of Tetrahymena pyriformis has been investigated with urea-acrylamide gel electrophoresis. The data show that the oral apparatus is composed of numerous proteins, two of which appear to be microtubule proteins (tubulins 1 and 2).  相似文献   

17.
Mitotic apparatus isolated from sea urchin eggs has been treated with meralluride sodium under conditions otherwise resembling those of its isolation. The treatment causes a selective morphological disappearance of microtubules while extracting a major protein fraction, probably consisting of two closely related proteins, which constitutes about 10% of mitotic apparatus protein. Extraction of other cell particulates under similar conditions yields much less of this protein. The extracted protein closely resembles outer doublet microtubule protein from sea urchin sperm tail in properties considered typical of microtubule proteins: precipitation by calcium ion and vinblastine, electrophoretic mobility in both acid and basic polyacrylamide gels, sedimentation coefficient, molecular weight, and, according to a preliminary determination, amino acid composition. An antiserum against a preparation of sperm tail outer doublet microtubules cross-reacts with the extract from mitotic apparatus. On the basis of these findings it appears that microtubule protein is selectively extracted from isolated mitotic apparatus by treatment with meralluride, and is a typical microtubule protein.  相似文献   

18.
Microtubules deployed during early development of the sea urchinembryo are derived both from a preexisting pool of subunitspresent in the egg and from microtubule protein subunits synthesizedin the embryo. Several aspects of microtubule protein synthesisand utilization are reviewed. Microtubule protein synthesisin early development utilizes oogenetic messenger RNA species.Translation of this mRNA is under regulation. Microtubule proteinsynthesis rises concomitantly with overall protein synthesisat fertilization, but rises at a relatively higher rate laterin cleavage stages. Microtubule protein labeled with [3H]-leucinein early development is incorporated into cilia, indicatingthat newly synthesized protein enters the pool of subunits usedin organelle assembly. The microtubule protein pool comprisesabout 1%of the soluble protein of the egg, and remains constantin size at least until the blastula stage. Direct pool sizeestimates are consistent with results of experiments on recruitmentof microtubule protein subunits into the mitotic apparatus andinto regenerating cilia. Soluble and particulate colchicinebinding fractions, which have been reported from several systems,appear to be present in sea urchin embryos. The possible roleof such fractions are discussed, as are aspects of the regulationof ciliary assembly.  相似文献   

19.
A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale.  相似文献   

20.
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号