首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose.  相似文献   

2.
T. Oku    Y. Wakasaki    N. Adachi    C. I. Kado    K. Tsuchiya  T. Hibi 《Journal of Phytopathology》1998,146(4):197-200
Xanthomonas campestris pv. campestris and X. oryzae pv, oryzae contain the 1428 base pair hrpX gene whose product is involved in the regulation oi hrp genes required for pathogericity, non-host hypersensitivity and non-permissibility of compatible host defence responses. Previous Southern blot hybridization studies have suggested that hrpX is conserved in several X. campestris pathovars and X. oryzae. strains. We have confirmed and extended these findings using hrpX gene amplification by polymerase chain reaction, coupled with Southern blot hybridization analyses. Sixteen distinct pathovars of X. campestris and 12 strains of X. oryzae pv, oryzae were shown to contain homologs of hrpX which were not apparent in heterologous bacteria such as Agrobacterium tumefaciens, A. rhizogenes, Erwinia carolovora ssp. carotovora, Pseudomonas syringae pv, glycinea. P. syringae pv, labaci , and Escherichia coli. The hrpX gene is therefore highly conserved among Xanthomonas species and its gene product strongly resembles positive regulatory proteins of the AraC protein family,  相似文献   

3.
In Xylella fastidiosa the fatty acid signal molecule diffusible signaling factor (DSF) is produced and sensed by components of the regulation of pathogenicity factors (rpf) cluster; lack of DSF production in RpfF mutants results in a non-vector-transmissible phenotype yet cells are hypervirulent to grape. rpfB has not been characterized in Xylella fastidiosa, although its homolog has been suggested to be required for DSF synthesis in Xanthomonas campestris pv. campestris. We show that RpfB is involved in DSF processing in both Xylella fastidiosa and Xanthomonas campestris, affecting the profile of DSF-like fatty acids observed in thin-layer chromatography. Although three fatty acids whose production is dependent on RpfF were detected in Xylella fastidiosa and Xanthomonas campestris wild-type strains, their respective rpfB mutants accumulated primarily one chemical species. Although no quantifiable effect of rpfB on plant colonization by Xylella fastidiosa was found, insect colonization and transmission was reduced. Thus, RpfB apparently is involved in DSF processing, and like Xanthomonas campestris, Xylella fastidiosa also produces multiple DSF molecules. It is possible that Xylella fastidiosa coordinates host vector and plant colonization by varying the proportions of different forms of DSF signals via RpfB.  相似文献   

4.
Computational analyses of four bacterial genomes of the Xanthomonadaceae family reveal new unique genes that may be involved in adaptation, pathogenicity, and host specificity. The Xanthomonas genus presents 3636 unique genes distributed in 1470 families, while Xylella genus presents 1026 unique genes distributed in 375 families. Among Xanthomonas-specific genes, we highlight a large number of cell wall degrading enzymes, proteases, and iron receptors, a set of energy metabolism genes, second copy of the type II secretion system, type III secretion system, flagella and chemotactic machinery, and the xanthomonadin synthesis gene cluster. Important genes unique to the Xylella genus are an additional copy of a type IV pili gene cluster and the complete machinery of colicin V synthesis and secretion. Intersections of gene sets from both genera reveal a cluster of genes homologous to Salmonella's SPI-7 island in Xanthomonas axonopodis pv citri and Xylella fastidiosa 9a5c, which might be involved in host specificity. Each genome also presents important unique genes, such as an HMS cluster, the kdgT gene, and O-antigen in Xanthomonas axonopodis pv citri; a number of avrBS genes and a distinct O-antigen in Xanthomonas campestris pv campestris, a type I restriction-modification system and a nickase gene in Xylella fastidiosa 9a5c, and a type II restriction-modification system and two genes related to peptidoglycan biosynthesis in Xylella fastidiosa temecula 1. All these differences imply a considerable number of gene gains and losses during the divergence of the four lineages, and are associated with structural genome modifications that may have a direct relation with the mode of transmission, adaptation to specific environments and pathogenicity of each organism.  相似文献   

5.
Sequencing of a 6.4-kb DNA fragment, cloned from the plant pathogenic bacterium Xanthomonas campestris pv. campestris 17 revealed five ORFs whose deduced amino acid sequences show strong similarities to the bacterial HrcA, GrpE, DnaK, DnaJ, and PdxK. The four heat shock genes are organized in the order hrcA-grpE-dnaK-dnaJ, a genome organization found in many gram-positive bacteria, but only in one gram-negative species (Xylella fastidiosa). These observations suggest that the HrcA-CIRCE system, comprising at least four genes arranged in this order, already existed for the regulation of stress responses before bacteria diverged into gram-negative and gram-positive groups. Primer-extension results suggested the presence of promoters at the regions upstream of grpE and dnaK. In the presence of stress, heat or ethanol (4%), the X. campestris pv. campestris 17 grpE and dnaK promoters were induced two- to three-fold over controls. Since the grpE and dnaK promoters possess E. coli sigma(32) promoter-like sequences, they are functional in E. coli, although at levels much lower than in X. campestris pv. campestris 17. Furthermore, expression of the X. campestris pv. campestris 17 dnaK promoter in E. coli was elevated by the cloned X. campestris sigma(32) gene, indicating that the cognate sigma(32) works more efficiently for the X. campestris promoters.  相似文献   

6.
The DsbA/DsbB oxidation pathway is one of the two pathways that catalyze disulfide bond formation of proteins in the periplasm of gram-negative bacteria. It has been demonstrated that DsbA is essential for multiple virulence factors of several animal bacterial pathogens. In this article, we present genetic evidence to show that the open reading frame XC_3314 encodes a DsbB protein that is involved in disulfide bond formation in periplasm of Xanthomonas campestris pv. campestris, the causative agent of crucifer black rot disease. The dsbB mutant of X. campestris pv. campestris exhibited attenuation in virulence, hypersensitive response, cell motility, and bacterial growth in planta. Furthermore, mutation in the dsbB gene resulted in ineffective type II and type III secretion systems as well as flagellar assembly. These findings reveal that DsbB is required for the pathogenesis process of X. campestris pv. campestris.  相似文献   

7.
A gene cluster containing lexA, recA and recX genes was previously identified and characterized in Xanthomonas campestris pathovar citri (X. c. pv. citri). We have now cloned and sequenced the corresponding regions in the Xanthomonas campestris pv. campestris (X. c. pv. campestris) and Xanthomonas oryzae pathovar oryzae (X. o. pv. oryzae) chromosome. Sequence analysis of these gene clusters showed significant homology to the previously reported lexA, recA and recX genes. The genetic linkage and the deduced amino acid sequences of these genes displayed very high identity in different pathovars of X. campestris as well as in X. oryzae. Immunoblot analysis revealed that the over-expressed LexA protein of X. c. pv. citri functioned as a repressor of recA expression in X. c. pv. campestris, indicating that the recombinant X. c. pv. citri LexA protein was functional in a different X. campestris pathovar. The abundance of RecA protein was markedly increased upon exposure of X. c. pv. campestris to mitomycin C, and an upstream region of this gene was shown to confer sensitivity to positive regulation by mitomycin C on a luciferase reporter gene construct. A symmetrical sequence of TTAGTAGTAATACTACTAA present within all three Xanthomonas lexA promoters and a highly conserved sequence of TTAGCCCCATACCGAA present in the three regulatory regions of recA indicate that the SOS box of Xanthomonas strains might differ from that of Escherichia coli.  相似文献   

8.
9.
A 13-kb DNA fragment containing oriC and the flanking genes thdF, orf900, yidC, rnpA, rpmH, oriC, dnaA, dnaN, recF, and gyrB was cloned from the gram-negative plant pathogen Xanthomonas campestris pv. campestris 17. These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa. The dnaA/dnaN intergenic region (273 bp) identified to be the minimal oriC region responsible for autonomous replication has 10 pure AT clusters of four to seven bases and only three consensus DnaA boxes. These findings are in disagreement with the notion that typical oriCs contain four or more DnaA boxes located upstream of the dnaA gene. The X. campestris pv. campestris 17 attB site required for site-specific integration of cloned fragments from filamentous phage phiLf replicative form DNA was identified to be a dif site on the basis of similarities in nucleotide sequence and function with the Escherichia coli dif site required for chromosome dimer resolution and whose deletion causes filamentation of the cells. The oriC and dif sites were located at 12:00 and 6:00, respectively, on the circular X. campestris pv. campestris 17 chromosome map, similar to the locations found for E. coli sites. Computer searches revealed the presence of both the dif site and XerC/XerD recombinase homologues in 16 of the 42 fully sequenced eubacterial genomes, but eight of the dif sites are located far away from the 6:00 point instead of being placed opposite the cognate oriC. The differences in the relative position suggest that mechanisms different from that of E. coli may participate in the control of chromosome replication.  相似文献   

10.
The nucleotide sequence of a 3.6-kb HindIII-SmaI DNA fragment of Xanthomonas campestris pv. campestris revealed four open reading frames which, based on sequence homologies, were designated tonB, exbB, exbD1, and exbD2. Analysis of translational fusions to alkaline phosphatase and beta-galactosidase confirmed that the TonB, ExbB, ExbD1, and ExbD2 proteins are anchored in the cytoplasmic membrane. The TonB protein of X. campestris pv. campestris lacks the conserved (Glu-Pro)n and (Lys-Pro)m repeats but harbors a 13-fold repeat of proline residues. By mutational analysis, the tonB, exbB, and exbD1 genes were shown to be essential for ferric iron import in X. campestris pv. campestris. In contrast, the exbD2 gene is not involved in the uptake of ferric iron.  相似文献   

11.
C Lacomme  D Roby 《FEBS letters》1999,459(2):149-153
New molecular markers of the hypersensitive response (HR) of Arabidopsis thaliana to the bacterial pathogen Xanthomonas campestris pv. campestris (X.c.c.) have been identified by differential screening of a cDNA library constructed from suspension cells inoculated by an HR-inducing strain in the presence of cycloheximide. Seven families of genes (called Athsr) have been isolated, show similarities to voltage-dependent anion channels (VDAC) and alternative oxidases, or are novel proteins. Athsr genes have shown to be specifically or preferentially expressed during the HR. These data suggest that Athsr genes might be involved in early events conditioning the establishment of the HR.  相似文献   

12.
Filamentous bacteriophages have very strict host specificities. Experiments were performed to investigate whether the A protein of the filamentous phage Cf, which infects Xanthomonas campestris pv. citri but not X. campestris pv. oryzae, is involved in determining Cf's host specificity. The gene encoding the A protein of Cf was cloned and expressed in X. campestris pv. citri. The genomic DNA of another filamentous bacteriophage, Xf, which infects X. campestris pv. oryzae but not X. campestris pv. citri, was then introduced by electroporation into X. campestris pv. citri that had expressed the A protein of Cf. The progeny phages thus produced were able to infect both X. campestris pv. oryzae and X. campestris pv. citri, indicating that the A protein of Cf was incorporated into the viral particles of Xf and conferred upon Xf the ability to infect the host of Cf. Inactivation of the A protein gene abolished the infectivity of Cf. The results of this study indicate that the A protein of Cf is responsible for controlling the host specificity of Cf.  相似文献   

13.
The gram-negative bacterium Xanthomonas campestris pv. campestris is the causal agent of black rot disease of cruciferous plants. Its genome encodes a large repertoire of two-component signal transduction systems (TCSTSs), which consist of histidine kinases and response regulators (RR) to monitor and respond to environmental stimuli. To investigate the biological functions of these TCSTS genes, we aimed to inactivate all 54 RR genes in X. campestris pv. campestris ATCC 33913, and successfully generated 51 viable mutants using the insertion inactivation method. Plant inoculation identified two novel response regulator genes (XCC1958 and XCC3107) that are involved in virulence of this strain. Genetic complementation demonstrated that XCC3107, designated as vgrR (virulence and growth regulator), also affects bacterial growth and activity of extracellular proteases. In addition, we assessed the survival of these mutants under various stresses, including osmotic stress, high sodium concentration, heat shock, and sodium dodecyl sulfate exposure, and identified a number of genes that may be involved in the general stress response of X. campestris pv. campestris. Mutagenesis and phenotypic characterization of RR genes in this study will facilitate future studies on signaling networks in this important phytopathogenic bacterium.  相似文献   

14.
The Gram-negative bacterium Xylella fastidiosa was the first plant pathogen to be completely sequenced. This species causes several economically important plant diseases, including citrus variegated chlorosis (CVC). Analysis of the genomic sequence of X. fastidiosa revealed a 12 kb DNA fragment containing an operon closely related to the gum operon of Xanthomonas campestris. The presence of all genes involved in the synthesis of sugar precursors, existence of exopolysaccharide (EPS) production regulators in the genome, and the absence of three of the X. campestris gum genes suggested that X. fastidiosa is able to synthesize an EPS different from that of xanthan gum. This novel EPS probably consists of polymerized tetrasaccharide repeating units assembled by the sequential addition of glucose-1-phosphate, glucose, mannose and glucuronic acid on a polyprenol phosphate carrier.  相似文献   

15.
16.
Predicted highly expressed (PHX) genes are compared for 16 gamma-proteobacteria and their similarities and differences are interpreted with respect to known or predicted physiological characteristics of the organisms. Predicted highly expressed genes often reflect the organism's predominant lifestyle, habitat, nutrition sources and metabolic propensities. This technique allows to predict principal metabolic activities of the microorganisms operating in their natural habitats. Among our findings is an unusually high number of PHX enzymes acting in cell wall biosynthesis, amino acid biosynthesis and replication in the ant endosymbiont Blochmannia floridanus. We ascribe the abundance of these PHX genes to specific aspects of the relationship between the bacterium and its host. Xanthomonas campestris is unique with a very high number of PHX genes acting in flagellum biosynthesis, which may play a special role during its pathogenicity. Shewanella oneidensis possesses three protein complexes which all can function as complex I in the respiratory chain but only the Na(+)-transporting NADH:ubiquinone oxidoreductase nqr-2 operon is PHX. The PHX genes of Vibrio parahaemolyticus are consistent with the microorganism's adaptation to extremely fast growth rates. Comparative analysis of PHX genes from complex environmental genomic sequences as well as from uncultured pathogenic microbes can provide a novel, useful tool to predict global flux of matter and key intermediates.  相似文献   

17.
Black rot of cruciferous plants, caused by Xanthomonas campestris pv. campestris , causes severe losses in agriculture around the world. This disease affects several cultures, including cabbage and broccoli, among others. Proteome studies of this bacterium have been reported; however, most of them were performed using the bacterium grown under culture media conditions. Recently, we have analyzed the proteome of X. campestris pv. campestris during the interaction with the susceptible cultivar of Brassica oleracea and several proteins were identified. The objective of the present study was to analyze the expressed proteins of X. campestris pv. campestris during the interaction with the resistant cultivar of B. oleracea . The bacterium was infiltrated in the leaves of the resistant plant and recovered for protein extraction and two-dimensional electrophoresis. The protein profile was compared with that of the bacterium isolated from the susceptible host and the results obtained revealed a group of proteins exclusive to the resistant interaction. Among the proteins identified in this study were plant and bacterium proteins, some of which were exclusively expressed during the resistant interaction.  相似文献   

18.
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.  相似文献   

19.
20.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a novel virulence deficient mutant (BXO1691) of X. oryzae pv. oryzae that has a Tn5 insertion in an open reading frame (phyA; putative phytase A) encoding a 373-amino acid (aa) protein containing a 28-aa predicted signal peptide. Extracellular protein profiles revealed that a 38-kDa band is absent in phyA mutants as compared with phyA+ strains. A BLAST search with phyA and its deduced polypeptide sequence indicated significant similarity with conserved hypothetical proteins in Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and limited homology to secreted phytases of Bacillus species. Homology modeling with a Bacillus phytase as the template suggests that the PhyA protein has a similar six-bladed beta-propeller architecture and exhibits conservation of certain critical active site residues. Phytases are enzymes that are involved in degradation of phytic acid (inositol hexaphosphate), a stored form of phosphate in plants. The phyA mutants exhibit a growth deficiency in media containing phytic acid as a sole phosphate source. Exogenous phosphate supplementation promotes migration of phyA X. oryzae pv. oryzae mutants in rice leaves. These results suggest that the virulence deficiency of phyA mutants is, at least in part, due to inability to use host phytic acid as a source of phosphate. phyA-like genes have not been previously reported to be involved in the virulence of any plant pathogenic bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号