首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 250 generations of mutation accumulation (MA) on the second chromosome competitive viability of Drosophila melanogaster was analyzed both in homozygous and heterozygous conditions. We used full-sib MA lines, where selection hampers the accumulation of severely deleterious mutations but is ineffective against mildly deleterious ones. A large control population was simultaneously evaluated. Competitive viability scores, unaffected by the expression of mutations in heterozygosis, were obtained relative to a Cy/L(2) genotype. The rate of decline in mean DeltaM approximately 0.1% was small. However, that of increase in variance DeltaV approximately 0.08 x 10(-3) was similar to the values obtained in previous experiments when severely deleterious mutations were excluded. The corresponding estimates of the mutation rate lambda > or = 0.01 and the average effect of mutations E(s) < or = 0.08 are in good agreement with Bateman-Mukai and minimum distance estimates for noncompetitive viability obtained from the same MA lines after 105 generations. Thus, competitive and noncompetitive viability show similar mutational properties. The regression estimate of the degree of dominance for mild-to-moderate deleterious mutations was approximately 0.3, suggesting that the pertinent value for new unselected mutations should be somewhat smaller.  相似文献   

2.
Burch CL  Guyader S  Samarov D  Shen H 《Genetics》2007,176(1):467-476
Although the frequency and effects of neutral and nearly neutral mutations are critical to evolutionary patterns and processes governed by genetic drift, the small effects of such mutations make them difficult to study empirically. Here we present the results of a mutation-accumulation experiment designed to assess the frequencies of deleterious mutations with undetectable effects. We promoted the accumulation of spontaneous mutations by subjecting independent lineages of the RNA virus 6 to repeated population bottlenecks of a single individual. We measured fitness following every bottleneck to obtain a complete picture of the timing and effects of the accumulated mutations with detectable effects and sequenced complete genomes to determine the number of mutations that were undetected by the fitness assays. To estimate the effects of the undetected mutations, we implemented a likelihood model developed for quantitative trait locus (QTL) data (Otto and Jones 2000) to estimate the number and effects of the undetected mutations from the measured number and effects of the detected mutations. Using this method we estimated a deleterious mutation rate of U = 0.03 and a gamma effects distribution with mean s=0.093 and coefficient of variation = 0.204. Although our estimates of U and s fall within the range of recent mutation rate and effect estimates in eukaryotes, the fraction of mutations with detectable effects on laboratory fitness (39%) appears to be far higher in 6 than in eukaryotes.  相似文献   

3.
Despite their importance, the parameters describing the spontaneous deleterious mutation process have not been well described in many organisms. If mutations are important for the evolution of every living organism, their importance becomes critical in the case of RNA-based viruses, in which the frequency of mutation is orders of magnitude larger than in DNA-based organisms. The present work reports minimum estimates of the deleterious mutation rate, as well as the characterization of the distribution of deleterious mutational effects on the total fitness of the vesicular stomatitis virus (VSV). The estimates are based on mutation-accumulation experiments in which selection against deleterious mutations was minimized by recurrently imposing genetic bottlenecks of size one. The estimated deleterious mutation rate was 1.2 mutations per genome and generation, with a mean fitness effect of –0.39% per generation. At the end of the mutation-accumulation experiment, the average reduction in fitness was 38% and the distribution of accumulated deleterious effects was, on average, left-skewed. The magnitude of the skewness depends on the initial fitness of the clone analysed. The implications of our findings for the evolutionary biology of RNA viruses are discussed.  相似文献   

4.
Zeyl C  DeVisser JA 《Genetics》2001,157(1):53-61
The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast strains differing only in the DNA mismatch-repair deficiency used to elevate the mutation rate in one (mutator) strain. Mutations were allowed to accumulate in 50 replicate lines of each strain, during 36 transfers of randomly chosen single colonies (approximately 600 generations). Among wild-type lines, fitnesses were bimodal, with one mode showing no change in mean fitness. The other mode showed a mean 29.6% fitness decline and the petite phenotype, usually caused by partial deletion of the mitochondrial genome. Excluding petites, maximum-likelihood estimates adjusted for the effect of selection were U = 9.5 x 10(-5) and sh = 0.217 for the wild type. Among the mutator lines, the best fit was obtained with 0.005 < or = U < or = 0.94 and 0.049 > or = sh > or = 0.0003. Like other recently tested model organisms, wild-type yeast have low mutation rates, with high mean fitness costs per mutation. Inactivation of mismatch repair increases the frequency of slightly deleterious mutations by approximately two orders of magnitude.  相似文献   

5.
The fitness effects of spontaneous mutations in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Abstract. Spontaneous mutation to mildly deleterious alleles has emerged as a potentially unifying component of a variety of observations in evolutionary genetics and molecular evolution. However, the biological significance of hypotheses based on mildly deleterious mutation depends critically on the rate at which new mutations arise and on their average effects. A long-term mutation-accumulation experiment with replicate lines of the nematode Caenorhabditis elegans maintained by single-progeny descent indicates that recurrent spontaneous mutation causes approximately 0.1% decline in fitness per generation, which is about an order of magnitude less than that suggested by previous studies with Drosophila . Two rather different approaches, Bateman-Mukai and maximum likelihood, suggest that this observation, along with the observed rate of increase in the variance of fitness among lines, is consistent with a genomic deleterious mutation rate for fitness of approximately 0.03 per generation and with an average homozygous effect of approximately 12%. The distribution of mutational effects for fitness appears to have a relatively low coefficient of variation, being no more extreme than expected for a negative exponential, and for one composite fitness measure (total progeny production) approaches constancy of effects. These results are derived from assays in a benign environment. At stressful temperatures, estimates of the genomic deleterious mutation rate (for genes expressed at such temperatures) is sixfold lower, whereas those for the average homozygous effect is approximately eightfold higher. Our results are reasonably compatible with existing estimates for flies, when one considers the differences between these species in the number of germ-line cell divisions per generation and the magnitude of transposable element activity.  相似文献   

6.
Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, "...individuals with extreme values of the trait will tend to carry more deleterious alleles...." We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa2, where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a2 is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a2; and beta, the intensity of selection, measured as the ratio of additive genetic variance to the "variance" of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that beta must equal Vm/VG, the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations.  相似文献   

7.
Recent mutation accumulation results from invertebrate species suggest that mild deleterious mutation is far less frequent than previously thought, implying smaller expressed mutational loads. Although the rate (lambda) and effect (s) of very slight deleterious mutation remain unknown, most mutational fitness decline would come from moderately deleterious mutation (s approximately 0.2, lambda approximately 0.03), and this situation would not qualitatively change in harsh environments. Estimates of the average coefficient of dominance (h) of non-severe deleterious mutations are controversial. The typical value of h = 0.4 can be questioned, and a lower estimate (about 0.1) is suggested. Estimated mutational parameters are remarkably alike for morphological and fitness component traits (excluding lethals), indicating low mutation rates and moderate mutational effects, with a distribution generally showing strong negative asymmetry and little leptokurtosis. New mutations showed considerable genotype-environment interaction. However, the mutational variance of fitness-component traits due to non-severe detrimental mutations did not increase with environmental harshness. For morphological traits, a class of predominantly additive mutations with no detectable effect on fitness and relatively small effect on the trait was identified. This should be close to that responsible for standing variation in natural populations.  相似文献   

8.
The dependence of spontaneous rate and phenotypic expression of 6-mercaptopurine resistance mutations of DNA replication synthesis was studied in cultured Chinese hamster cells. Spontaneous mutations arising with a constant rate per cell per time unit independently on DNA replication rate were shown to be expressed only in the course of subsequent cell divisions. The frequency of N-nitrosomethylurea induced mutations in cells with reduced and normal DNA replication rate is approximately the same. However, DNA replication synthesis is necessary for the phenotypic expression of both induced and spontaneous mutations. The causes of the phenotypic lag are discussed.  相似文献   

9.
A subclone of a human diploid lymphoblastoid cell line, TK-6, with consistently high cloning efficiency has been used to estimate the rates of somatic mutations on the basis of protein variation detected by two-dimensional polyacrylamide gel electrophoresis. A panel of 267 polypeptide spots per gel was screened, representing the products of approximately 263 unselected loci. The rate of human somatic mutation in vitro was estimated by measuring the proportion of protein variants among cell clones isolated at various times during continuous exponential growth of a TK-6 cell population. Three mutants of spontaneous origin were observed, giving an estimated spontaneous rate of 6 x 10(-8) electrophoretic mutations per allele per cell generation (i.e., 1.2 x 10(-7) per locus per cell generation). Following treatment of cells with N-ethyl-N-nitrosourea, a total of 74 confirmed variants at 54 loci were identified among 1143 clones analyzed (approximately 601,000 allele tests). The induced variants include 65 electromorphs which exhibit altered isoelectric charge and/or apparent molecular weight and nine nullimorphs for each of which a gene product was not detected at its usual location on the gel. The induced frequency for these 65 structural gene mutants is 1.1 x 10(-4) per allele. An excess of structural gene mutations at ten known polymorphic loci and repeat mutations at these and other loci suggest nonrandomness of mutation in human somatic cells. Nullimorphs occurring at three heterozygous loci in TK-6 cells may be caused by genetic processes other than structural gene mutation.  相似文献   

10.
Spontaneous mutagenesis and mutagenesis induced by chemical mutagens in culture Chinese hamster cells were investigated. Appearance of mutations controlling the resistance to 6-mercaptopurine (6M) and reverse mutations to sensitivity was studied. The rate of spontaneous mutations of 6M resistance in cells studied was found to be sufficiently stable: it was independent on the repeated freezing of these cells and the duration of their cultivation. 5-bromodeoxyuridine (BUdR) has been shown to induce mutations to 6M resistance in cells of the 237i clone; the rate of induced mutations in some experiments as compared to the rate of spontaneous mutations was 1-2 orders higher. No clear-cut delay of phenotypic expression of BUdR-induced mutations was found. Seven independently arisen mutant clones were isolated. Five of them appeared spontaneously and two clones were induced by BUdR. Three spontaneously arisen clones were found to be reversible to sensitivity. The rate of reverse mutations in cells of the other four clones, did not exceed (2,3-3,5)-10(-6) per cell per generation. The rate of spontaneous reverse mutations in these clones was less at least one order lower as compared to the rate of spontaneous mutations to 6M-resistance. The attempts to induce reverse mutations to sensitivity by N-nitrosomethylurea in spontaneously reversible resistant cells and by BUdR in mutant cells arisen as a result of the treatment with the same agent proved unsuccessful. A method of estimation of experiment's resolving power is described for cases, when no expected events (in our study reverse mutations) were observed.  相似文献   

11.
This paper provides an overview of the concept of doubling dose, changes in the database employed for calculating it over the past 30 years and recent advances in this area. The doubling dose is estimated as a ratio of the average rates of spontaneous and induced mutations in a defined set of genes. The reciprocal of the doubling dose is the relative mutation risk per unit dose and is one of the quantities used in estimating genetic risks of radiation exposures. Most of the doubling dose estimates used thus far have been based on mouse data on spontaneous and induced rates of mutations. Initially restricted to mutations in defined genes (with particular focus on the seven genes at which induced recessive mutations were studied in different laboratories), the doubling dose concept was subsequently expanded to include other endpoints of genetic damage. At least during the past 20 years, the magnitude of the doubling dose has remained unchanged at approximately 1 Gy for chronic low LET radiation exposures.One of the assumptions underlying the use of the doubling dose based on mouse data for predicting genetic risks in humans, namely, that the spontaneous rates of mutations in mouse and human genes are similar, is incorrect; this is because of the fact that, unlike in the mouse, the mutation rate in humans differs between the two sexes (being higher in males than in females) and increases with paternal age. Further, an additional source of uncertainty in spontaneous mutation rate estimates in mice has been uncovered. This is related to the non-inclusion of mutations which arise as germinal mosaics and which result in clusters of identical mutations in the following generation. In view of these reasons, it is suggested that a prudent way forward is to revert to the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for doubling dose calculations as was first done in the 1972 BEIR report of the US National Academy of Sciences. The advantages of this procedure are the following: (i) estimates of spontaneous mutation rates in humans, which are usually presented as sex-averaged rates, automatically include sex differences and paternal age-effects; (ii) since human geneticists count all mutations that arise anew irrespective of whether they are part of a cluster or not, had clusters occurred, they would have been included in mutation rate calculations and (iii) one stays close to the aim of risk estimation, namely, estimation of the risk of genetic diseases in humans.On the basis of detailed analyses of the pertinent data, it is now estimated that the average spontaneous mutation rate of human genes (n=135 genes) is: (2.95+/-0.64)x10(-6) per gene and the average induced mutation rate of mouse genes (n=34) is: (0.36+/-0.10)x10(-5) per gene per Gy for chronic low LET radiation. The resultant doubling dose is (0.82+/-0.29) Gy. The standard error of the doubling dose estimate incorporates sampling variability across loci for estimates of spontaneous and induced mutation rates as well as variability in induced mutation rates in individual mouse experiments on radiation-induced mutations. We suggest the use of a rounded doubling dose value of 1 Gy for estimating genetic risks of radiation. Although this value is the same as that used previously, its conceptual basis is different and the present estimate is based on more extensive data than has so far been the case.  相似文献   

12.
Willis JH 《Genetics》1999,153(4):1885-1898
The goal of this study is to provide information on the genetics of inbreeding depression in a primarily outcrossing population of Mimulus guttatus. Previous studies of this population indicate that there is tremendous inbreeding depression for nearly every fitness component and that almost all of this inbreeding depression is due to mildly deleterious alleles rather than recessive lethals or steriles. In this article I assayed the homozygous and heterozygous fitnesses of 184 highly inbred lines extracted from a natural population. Natural selection during the five generations of selfing involved in line formation essentially eliminated major deleterious alleles but was ineffective in purging alleles with minor fitness effects and did not appreciably diminish overall levels of inbreeding depression. Estimates of the average degree of dominance of these mildly deleterious alleles, obtained from the regression of heterozygous fitness on the sum of parental homozygous fitness, indicate that the detrimental alleles are partially recessive for most fitness traits, with h approximately 0.15 for cumulative measures of fitness. The inbreeding load, B, for total fitness is approximately 1.0 in this experiment. These results are consistent with the hypothesis that spontaneous mildly deleterious mutations occur at a rate >0.1 mutation per genome per generation.  相似文献   

13.
Bégin M  Schoen DJ 《Genetics》2006,174(4):2129-2136
Little is known about the role of transposable element (TE) insertion in the production of mutations with mild effects on fitness, the class of mutations thought to be central to the evolution of many basic features of natural populations. We propagated mutation-accumulation (MA) lines of two RNAi-deficient strains of Caenorhabditis elegans that exhibit germline transposition. We show here that the impact of TE activity was to raise the level of mildly deleterious mutation by 2- to 8.5-fold, as estimated from fecundity, longevity, and body length measurements, compared to that observed in a parallel MA experiment with a control strain characterized by a lack of germline transposition. Despite this increase, the rate of mildly deleterious mutation was between one and two orders of magnitude lower than the rate of TE accumulation, which was approximately two new insertions per genome per generation. This study suggests that high rates of TE activity do not necessarily translate into high rates of detectable nonlethal mutation.  相似文献   

14.
García-Dorado A  Gallego A 《Genetics》2003,164(2):807-819
We simulated single-generation data for a fitness trait in mutation-accumulation (MA) experiments, and we compared three methods of analysis. Bateman-Mukai (BM) and maximum likelihood (ML) need information on both the MA lines and control lines, while minimum distance (MD) can be applied with or without the control. Both MD and ML assume gamma-distributed mutational effects. ML estimates of the rate of deleterious mutation had larger mean square error (MSE) than MD or BM had due to large outliers. MD estimates obtained by ignoring the mean decline observed from comparison to a control are often better than those obtained using that information. When effects are simulated using the gamma distribution, reducing the precision with which the trait is assayed increases the probability of obtaining no ML or MD estimates but causes no appreciable increase of the MSE. When the residual errors for the means of the simulated lines are sampled from the empirical distribution in a MA experiment, instead of from a normal one, the MSEs of BM, ML, and MD are practically unaffected. When the simulated gamma distribution accounts for a high rate of mild deleterious mutation, BM detects only approximately 30% of the true deleterious mutation rate, while MD or ML detects substantially larger fractions. To test the robustness of the methods, we also added a high rate of common contaminant mutations with constant mild deleterious effect to a low rate of mutations with gamma-distributed deleterious effects and moderate average. In that case, BM detects roughly the same fraction as before, regardless of the precision of the assay, while ML fails to provide estimates. However, MD estimates are obtained by ignoring the control information, detecting approximately 70% of the total mutation rate when the mean of the lines is assayed with good precision, but only 15% for low-precision assays. Contaminant mutations with only tiny deleterious effects could not be detected with acceptable accuracy by any of the above methods.  相似文献   

15.
P. D. Keightley 《Genetics》1996,144(4):1993-1999
Much population genetics and evolution theory depends on knowledge of genomic mutation rates and distributions of mutation effects for fitness, but most information comes from a few mutation accumulation experiments in Drosophila in which replicated chromosomes are sheltered from natural selection by a balancer chromosome. I show here that data from these experiments imply the existence of a large class of minor viability mutations with approximately equivalent effects. However, analysis of the distribution of viabilities of chromosomes exposed to EMS mutagenesis reveals a qualitatively different distribution of effects lacking such a minor effects class. A possible explanation for this difference is that transposable element insertions, a common class of spontaneous mutation event in Drosophila, frequently generate minor viability effects. This explanation would imply that current estimates of deleterious mutation rates are not generally applicable in evolutionary models, as transposition rates vary widely. Alternatively, much of the apparent decline in viability under spontaneous mutation accumulation could have been nonmutational, perhaps due to selective improvement of balancer chromosomes. This explanation accords well with the data and implies a spontaneous mutation rate for viability two orders of magnitude lower than previously assumed, with most mutation load attributable to major effects.  相似文献   

16.
Two genetic procedures were used to obtain amino acid replacements in the lacZ-encoded beta-galactosidase in Escherichia coli. Amino acid replacements could be obtained without regard to their effects on lactase activity by selecting spontaneous mutations that relieved the strong polarity of six nonsense mutations. When streaked on MacConkey- lactose indicator plates, approximately 75% of these mutants gave strong red lactose-fermenting colonies, and 25% gave white nonfermenting colonies. Mutants from 11 other nonsense codons were isolated directly using MacConkey-lactose indicator plates, on which positive color indication requires only 0.5% of the wildtype lactase activity. Among the total of 17 codons, 25 variant beta-galactosidases were identified using electrophoresis and thermal denaturation studies. The fitness effects of these variant beta-galactosidases were determined using competition experiments conducted with lactose as the sole nutrient limiting the growth rate in chemostat cultures. Three of the replacements were deleterious, one was selectively advantageous, and the selective effects of the remaining 21 were undetectable under conditions in which the smallest detectable selection coefficient was approximately 0.4%/generation.   相似文献   

17.
The mutability of bacteriophages offers a particular advantage in the treatment of bacterial infections not afforded by other antimicrobial therapies. When phage-resistant bacteria emerge, mutation may generate phage capable of exploiting and thus limiting population expansion among these emergent types. However, while mutation potentially generates beneficial variants, it also contributes to a genetic load of deleterious mutations. Here, we model the influence of varying phage mutation rate on the efficacy of phage therapy. All else being equal, phage types with historical mutation rates of approximately 0.1 deleterious mutations per genome per generation offer a reasonable balance between beneficial mutational diversity and deleterious mutational load. We determine that increasing phage inoculum density can undesirably increase the peak density of a mutant bacterial class by limiting the in situ production of mutant phage variants. For phage populations with minimal genetic load, engineering mutation rate increases beyond the mutation-selection balance optimum may provide even greater protection against emergent bacterial types, but only with very weak selective coefficients for de novo deleterious mutations (below approximately 0.01). Increases to the mutation rate beyond the optimal value at mutation-selection balance may therefore prove generally undesirable.  相似文献   

18.
Rare, random mutations were induced in budding yeast by ethyl methanesulfonate (EMS). Clones known to bear a single non-neutral mutation were used to obtain mutant heterozygotes and mutant homozygotes that were later compared with wild-type homozygotes. The average homozygous effect of mutation was an approximately 2% decrease in the growth rate. In heterozygotes, the harmful effect of these relatively mild mutations was reduced approximately fivefold. In a test of epistasis, two heterozygous mutant loci were paired at random. Fitness of the double mutants was best explained by multiplicative action of effects at single loci, with little evidence for epistasis and essentially excluding synergism. In other experiments, the same mutations in haploid and heterozygous diploid clones were compared. Regardless of the haploid phenotypes, mildly deleterious or lethal, fitness of the heterozygotes was decreased by less than half a per cent on average. In general, the results presented here suggest that most mutations tend to exhibit small and weakly interacting effects in heterozygous loci regardless of how harmful they are in haploids or homozygotes.  相似文献   

19.
Mildly deleterious mutation has been invoked as a leading explanation for a diverse array of observations in evolutionary genetics and molecular evolution and is thought to be a significant risk of extinction for small populations. However, much of the empirical evidence for the deleterious-mutation process derives from studies of Drosophila melanogaster, some of which have been called into question. We review a broad array of data that collectively support the hypothesis that deleterious mutations arise in flies at rate of about one per individual per generation, with the average mutation decreasing fitness by about only 2% in the heterozygous state. Empirical evidence from microbes, plants, and several other animal species provide further support for the idea that most mutations have only mildly deleterious effects on fitness, and several other species appear to have genomic mutation rates that are of the order of magnitude observed in Drosophila. However, there is mounting evidence that some organisms have genomic deleterious mutation rates that are substantially lower than one per individual per generation. These lower rates may be at least partially reconciled with the Drosophila data by taking into consideration the number of germline cell divisions per generation. To fully resolve the existing controversy over the properties of spontaneous mutations, a number of issues need to be clarified. These include the form of the distribution of mutational effects and the extent to which this is modified by the environmental and genetic background and the contribution of basic biological features such as generation length and genome size to interspecific differences in the genomic mutation rate. Once such information is available, it should be possible to make a refined statement about the long-term impact of mutation on the genetic integrity of human populations subject to relaxed selection resulting from modern medical procedures.  相似文献   

20.
In an effort to provide insight into the role of mutation in the maintenance of genetic variance for life-history traits, we accumulated spontaneous mutations in 10 sets of clonal replicates of Daphnia pulex for approximately 30 generations and compared the variance generated by mutation with the standing level of variation in the wild population. Mutations for quantitative traits appear to arise at a fairly high rate in this species, on the order of at least 0.6 per character per generation, but have relatively small heterozygous effects, changing the phenotype by less than 2.5% of the mean. The mean persistence time of a new mutation affecting life-history/body-size traits is approximately 40 generations in the natural population, which requires an average selection coefficient against new mutations of approximately 3% in the heterozygous state. These data are consistent with the idea that the vast majority of standing genetic variance for life-history characters may be largely a consequence of the recurrent introduction of transient cohorts of mutations that are at least conditionally deleterious and raise issues about the meaning of conventional measures of standing levels of variation for fitness-related traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号