首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.  相似文献   

2.
Spinach chloroplast thylakoid membranes were chemically modified with membrane penetrating reagents reactive toward protein carboxyl groups, a carbodiimide and the nucleophiles [14C]glycine ethyl ester or [3H]serotonin. The reagents, being weak bases, were accumulated within the inner aqueous space in the light, due to the low pH inside. Both the accumulation and the low pH stimulating effect on the carbodiimide activation step contributed to a greater labeling in the light compared to dark, and uncouplers inhibited most of the light-dependent increase. Hence, it is likely that the proteins showing the light-dependent, uncoupler-sensitive labeling have those parts located within the inner aqueous space or within the membrane itself. While many membrane proteins which separated on sodium dodecyl sulfate-polyacrylamide gels (12.5–25% gradient) showed some increased labeling in the light, the most conspicuous were the four polypeptides of the chlorophyll ab light-harvesting complex. The light-harvesting complex was purified from dark- and light-treated, labeled membranes. The resultant preparation showed about a sixfold, light-dependent, uncoupler-sensitive labeling increase compared to dark conditions. Polypeptides near 6 and 8 kdalton showed light-dependent, uncoupler-resistent increases in carboxyl group modification, which could be due to localized acidic conditions near sites of proton release.  相似文献   

3.
Characterization of a parallel-stranded DNA hairpin   总被引:3,自引:0,他引:3  
Recently we have shown that synthetic DNA containing homooligomeric A-T base pairs can form a parallel-stranded intramolecular hairpin structure [van de Sande et al. (1988) Science (Washington, D.C.) 241, 551-557]. In the present study, we have employed NMR and optical spectroscopy to investigate the structure of the parallel-stranded (PS) DNA hairpin 3'-d(T)8C4(A)8-3' and the related antiparallel (APS) hairpin 5'-d(T)8C4(A)8-3'. The parallel orientation of the strands in the PS oligonucleotide is achieved by introducing a 5'-5' phosphodiester linkage in the hairpin loop. Ultraviolet spectroscopic and fluorescence data of drug binding are consistent with the formation of PS and APS structures, respectively, in these two hairpins. Vacuum circular dichroism measurements in combination with theoretical CD calculations indicate that the PS structure forms a right-handed helix. 31P NMR measurements indicate that the conformation of the phosphodiester backbone of the PS structure is not drastically different from that of the APS control. The presence of slowly exchanging imino protons at 14 ppm and the observation of nuclear Overhauser enhancement between imino protons and the AH-2 protons demonstrate that similar base pairing and base stacking between T and A residues occur in both hairpins. However, the small chemical shift dispersion observed in proton NMR spectra of the PS hairpin suggests that the stem of this hairpin is more regular than that of the APS hairpin. On the basis of NOESY measurements, we find that the orientation of the bases is in the anti region and that the sugar puckering is in the 2'-endo range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Stretches of parallel-stranded (ps) double-helical DNA can arise within antiparallel-stranded (aps) Watson-Crick DNA in looped structures or in the presence of sequence mismatches. Here we studied an effect of a pyrimidinone-G (PG) base pair on the stability and conformation of the ps DNA to explore whether P is useful as a structural probe.  相似文献   

5.
Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications.  相似文献   

6.
Summary The reactivity of Grignard reagents with UNCAs (Urethane N-protected Carboxyanhydrides of Amino acids) is described. We observed that, depending on the method of addition of the organometallic compounds, the reaction proceeded differently: (i) when the UNCA was added to the Grignard reagent, we obtained a mixture of five different products which were all identified; and (ii) when the organometallic reagent was added to the UNCA, we also obtained a mixture of the same products but in different proportions, with the major component corresponding to the urethane N-protectedN-acyl amino acid derivative.  相似文献   

7.
The reactivity of Grignard reagents with UNCAs (UrethaneN-protected Carboxyanhydrides of Amino acids)is described. We observed that, depending on the method ofaddition of the organometallic compounds, the reactionproceeded differently:(i) when the UNCA was added to the Grignard reagent, weobtained a mixture of five different products whichwere all identified; and (ii) when the organometallic reagent was added to theUNCA, we also obtained a mixture of the same productsbut in different proportions, with the major componentcorresponding to the urethane N-protected N-acyl aminoacid derivative.  相似文献   

8.
Guanine modification during chemical DNA synthesis.   总被引:1,自引:10,他引:1       下载免费PDF全文
Base modification during solid-phase phosphoramidite synthesis of oligodeoxynucleotides has been investigated. We have discovered chemical modification that converts dG and dG-containing oligomers to a fluorescent form. This modification has been linked to N,N-dimethylaminopyridine (DMAP), an acylation catalyst, which can displace phosphate triester adducts at the 6-position of guanine. Further, we have found that this fluorescent intermediate can be converted in ammonium hydroxide solution to 2,6 diaminopurine deoxyribonucleoside (2,6 DAP), a potentially mutagenic nucleoside analog. We have shown that N-methylimidazole (NMI) in place of DMAP eliminates the fluorescent species and reduces 2,6 DAP contamination.  相似文献   

9.
10.
Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5'-CCTATATCC-3' in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis-diammine Pt(II)-bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5'-CCTATATCC-3' (I), 5'-CCTTAATCC-3' (II), 5'-CCTTATTCC-3' (III), 5'-CCTTTTTCC-3' (IV) and 5'-CCAATTTCC-3' (V) decreases in the order I = II > III > IV > V . The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

11.
12.
The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.  相似文献   

13.
Substrate properties of 25-nt parallel-stranded linear DNA duplexes   总被引:2,自引:0,他引:2  
K Rippe  T M Jovin 《Biochemistry》1989,28(24):9542-9549
Four 25-nt oligonucleotides consisting of sequences of dA and dT (D1-4) have been synthesized. As shown in a companion paper (Rippe et al., 1989), the two combinations D1.D3 and D2.D4 form normal antiparallel duplexes, whereas the pairs D1.D2 and D3.D4 constitute duplexes with the same sequences, but with the two strands parallel to each other. The activities of the following DNA processing enzymes and chemical reagents on the parallel stranded (ps) and antiparallel stranded (aps) duplexes were tested. (i) The restriction endonucleases DraI, SspI, and MseI do not cut the ps duplexes. (ii) DNase I and exonuclease III exhibit a much lower activity with the ps duplexes. (iii) The nuclease activities of S 1 nuclease, micrococcal nuclease (S 7), phage lambda 5'-exonuclease, and the 3'-5' nuclease activity of Escherichia coli DNA polymerase I and its large fragment are higher with the ps than with the aps substrates. (iv) Bal 31 nuclease and the chemical nuclease 1,10-phenanthroline-copper ion [(OP)2Cu+] degrade ps-DNA and aps-DNA at approximately the same rate but show preferred cutting sites only with the aps molecules. (v) The iron(II)-EDTA complex has equivalent nuclease activities with the ps and the aps molecules. (vi) The ps duplex is not a substrate for blunt-end ligation with phage T4 DNA ligase.  相似文献   

14.
Peplomycin-mediated degradation of parallel-stranded (ps) duplex was investigated. It was found that Co- and Fe-peplomycins degraded ps DNA duplex by 4'-hydrogen abstraction at 5'-GPy (pyrimidine) site in a similar manner to that of antiparallel B-DNA. While the orientation of two strands of ps and B-form DNA duplexes are reversed, peplomycin metal complex can bind to ps DNA duplex to cause oxidative DNA damage. These results indicate that peplomycin metal complex mainly interacts with one strand which is damaged.  相似文献   

15.
Theoretical analysis of ''addressed'' chemical modification of DNA.   总被引:1,自引:2,他引:1       下载免费PDF全文
Chemical "addressed" modification of DNA involves treatment of single-stranded DNA with oligonucleotides complementary to certain target sequences in this DNA and bearing a groupings reactive towards DNA bases. The binding of oligonucleotides can occur both at completely (specific) and incompletely (nonspecific) complementary sites. We analyse the modification of a fragment that is flanked by two target sequences complementary to a given oligonucleotide address, contains no more such targets and has some randomly distributed sites for nonspecific binding. Conditions for the maximum ratio between specific and non-specific modification are determined. We find the probability of both target termini being specifically modified without any non-specific modification occurring within the fragment up to a given moment in time. Quantitative analysis is based on the use of known features of the specific and non-specific binding of an oligonucleotide to DNA sites. This analysis shows the possibility of specific cutting of DNA based on addressed modification.  相似文献   

16.
Parallel-stranded DNA can be formed from alternating AT segments and is not restricted exclusively to homooligomeric AT sequences. DNA oligonucleotides 3'-d(AT)nxC4(AT)n-3' (where x indicates the location of the 5'-5' phosphodiester linkage) form parallel-stranded hairpin structures at micromolar strand concentration for n = 4 or 5 but not for n = 6, 7. The spectral properties of the parallel-stranded structures are similar to those of the hairpin structures containing homooligomeric AT stems. However, parallel-stranded structures formed in alternating AT segments are significantly less stable than either their corresponding antiparallel control or the homooligomeric parallel AT hairpins as evidenced by their lower helix-coil transition enthalpy, melting temperature, and stability constant. This results in a remarkable polymorphism which is most pronounced for 3'-d(AT)5xC4(AT)5-3'. This oligonucleotide can exist as a parallel-stranded hairpin, coil, or concatameric antiparallel structure(s), depending on temperature and strand concentration. These results suggest simple guidelines for the design of parallel-stranded DNA. In addition, we present a model for the assessment of the stability of parallel-stranded duplex structures formed from AT base pairs based on their sequence.  相似文献   

17.
18.
The efficiency of chemical ligation method have been demonstrated by assembling a number of DNA duplexes with modified sugar phosphate backbone. Condensation on a tetradecanucleotide template of hexa(penta)- and undecanucleotides differing only in the terminal nucleoside residue have been performed using water-soluble carbodiimide as a condensing agent. As was shown by comparing the efficiency of chemical ligation of single-strand breaks in those duplexes, the reaction rate rises 70 or 45 times if the 3'-OH group is substituted with an amino or phosphate group (the yield of products with a phosphoramidate or pyrophosphate bond is 96-100% in 6 d). Changes in the conformation of reacting groups caused by mismatched base pairs (A.A, A.C) as well as the hybrid rU.dA pair or an unpaired base make the template-directed condensation less effective. The thermal stability of DNA duplexes was assayed before and after the chemical ligation. Among all of the modified duplexes, only the duplex containing 3'-rU in the nick was found to be a substrate of T4 DNA ligase.  相似文献   

19.
To create new, effective reagents for affinity modification of restriction-modification (R-M) enzymes, a regioselective method for reactive dialdehyde group incorporation into oligonucleotides, based on insertion of a 1-beta-D-galactopyranosylthymine residue, has been developed. We synthesized DNA duplex analogs of the substrates of the Eco RII and Mva I R-M enzymes that contained a galactose or periodate-oxidized galactose residue as single substituents either in the center of the Eco RII (Mva I) recognition site or in the flanking nucleotide sequence. The dependence of binding, cleavage and methylation of these substrate analogs on the modified sugar location in the duplex was determined. Cross-linking of the reagents to the enzymes under different conditions was examined. M. Eco RII covalent attachment to periodate-oxidized substrate analogs proceeded in a specific way and to a large extent depended on the location of the reactive dialdehyde group in the substrate. The yield of covalent attachment to a DNA duplex with a dialdehyde group in the flanking sequence with Eco RII or Mva I methylases was 9-20% and did not exceed 4% for R. Eco RII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号