首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytokinesis in higher plants involves the phragmoplast, a complex cytoplasmic structure that consists of microtubules (MTs), microfilaments (MFs) and membrane elements. Both MTs and MFs are essential for cell plate formation, although it is not clear which motor proteins are involved. Some candidate processes for motor proteins include transport of Golgi vesicles to the plane of the cell plate and the spatiotemporal organization of the cytoskeletal elements in order to achieve proper deposition and alignment of the cell plate. We have focused on the kinesin-like calmodulin binding protein (KCBP) and, more broadly, on myosins. Using an antibody that constitutively activates KCBP, we find that this MT motor, which is minus-end directed, contributes to the organization of the spindle and phragmoplast MTs. It does not participate in vesicle transport; rather, because of the orientation of the phragmoplast MTs, it is supposed that plus-end kinesins fill this role. Myosins, on the other hand, based on their inhibition with 2,3-butanedione monoxime and 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine (ML-7), are associated with the process of post-mitotic spindle/phragmoplast alignment and with late lateral expansion of the cell plate. They are also not the principal motors involved in vesicle transport.  相似文献   

2.
Y.-R. Julie Lee  Hoa M. Giang    Bo Liu 《The Plant cell》2001,13(11):2427-2440
In higher plants, the formation of the cell plate during cytokinesis requires coordinated microtubule (MT) reorganization and vesicle transport in the phragmoplast. MT-based kinesin motors are important players in both processes. To understand the mechanisms underlying plant cytokinesis, we have identified AtPAKRP2 (for Arabidopsis thaliana phragmoplast-associated kinesin-related protein 2). AtPAKRP2 is an ungrouped N-terminal motor kinesin. It first appeared in a punctate pattern among interzonal MTs during late anaphase. When the phragmoplast MT array appeared in a mirror pair, AtPAKRP2 became more concentrated near the division site, and additional signal could be detected elsewhere in the phragmoplast. In contrast, the previously identified AtPAKRP1 protein is associated specifically with bundles of MTs in the phragmoplast at or near their plus ends. Localization of the tobacco homolog(s) of AtPAKRP2 was altered by treatment of brefeldin A in BY-2 cells. We discuss the possibility that AtPAKRP1 plays a role in establishing and/or maintaining the phragmoplast MT array, and AtPAKRP2 may contribute to the transport of Golgi-derived vesicles in the phragmoplast.  相似文献   

3.
Plant cytokinesis starts in the center of the division plane, with vesicle fusion generating a new membrane compartment, the cell plate, that subsequently expands laterally by continuous fusion of newly arriving vesicles to its margin. Targeted delivery of vesicles is assisted by the dynamic reorganization of a plant-specific cytoskeletal array, the phragmoplast, from a solid cylinder into an expanding ring-shaped structure. This lateral translocation is brought about by depolymerization of microtubules in the center, giving way to the expanding cell plate, and polymerization of microtubules along the edge. Whereas several components are known to mediate cytokinetic vesicle fusion [8-10], no gene function involved in phragmoplast dynamics has been identified by mutation. Mutations in the Arabidopsis HINKEL gene cause cytokinesis defects, such as enlarged cells with incomplete cell walls and multiple nuclei. Proper targeting of the cytokinesis-specific syntaxin KNOLLE [8] and lateral expansion of the phragmoplast are not affected. However, the phragmoplast microtubules appear to persist in the center, where vesicle fusion should result in cell plate formation. Molecular analysis reveals that the HINKEL gene encodes a plant-specific kinesin-related protein with a putative N-terminal motor domain and is expressed in a cell cycle-dependent manner similar to the KNOLLE gene. Our results suggest that HINKEL plays a role in the reorganization of phragmoplast microtubules during cell plate formation.  相似文献   

4.
Ho CM  Hotta T  Guo F  Roberson RW  Lee YR  Liu B 《The Plant cell》2011,23(8):2909-2923
In plant cells, microtubules (MTs) in the cytokinetic apparatus phragmoplast exhibit an antiparallel array and transport Golgi-derived vesicles toward MT plus ends located at or near the division site. By transmission electron microscopy, we observed that certain antiparallel phragmoplast MTs overlapped and were bridged by electron-dense materials in Arabidopsis thaliana. Robust MT polymerization, reported by fluorescently tagged End Binding1c (EB1c), took place in the phragmoplast midline. The engagement of antiparallel MTs in the central spindle and phragmoplast was largely abolished in mutant cells lacking the MT-associated protein, MAP65-3. We found that endogenous MAP65-3 was selectively detected on the middle segments of the central spindle MTs at late anaphase. When MTs exhibited a bipolar appearance with their plus ends placed in the middle, MAP65-3 exclusively decorated the phragmoplast midline. A bacterially expressed MAP65-3 protein was able to establish the interdigitation of MTs in vitro. MAP65-3 interacted with antiparallel microtubules before motor Kinesin-12 did during the establishment of the phragmoplast MT array. Thus, MAP65-3 selectively cross-linked interdigitating MTs (IMTs) to allow antiparallel MTs to be closely engaged in the phragmoplast. Although the presence of IMTs was not essential for vesicle trafficking, they were required for the phragmoplast-specific motors Kinesin-12 and Phragmoplast-Associated Kinesin-Related Protein2 to interact with MT plus ends. In conclusion, we suggest that the phragmoplast contains IMTs and highly dynamic noninterdigitating MTs, which work in concert to bring about cytokinesis in plant cells.  相似文献   

5.
During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo‐vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP‐labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co‐localisation studies using GFP–CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast‐associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP–CESA from doughnut‐shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP–CESA density diminished, whereas GFP–CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP–CESA in clathrin‐containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose‐deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.  相似文献   

6.
Detailed correlation of in vitro observations with the arrangement of microtubules (MTs) during anaphase-telophase were made on endosperm of Haemanthus katherinae. It is stressed that the general course of events leading to the formation of the phragmoplast is the same in all cells, but considerable variation of details may be found in different objects and even in various cells of the same tissue. The changes of MT arrangement in the interzonal region responsible for formation of the phragmoplast already occur in anaphase. During this stage continuous fibers (composed of numerous MTs) lengthen, become thinner (the number of MTs on a cross-section decreases), and often seem to break. After mid-anaphase, thin fibers begin to oscillate transversely to the axis of the phragmoplast and often are considerably laterally displaced (lateral movements). The longest MTs in the phragmoplast are present during oscillations and lateral movements. The new MTs arise in the phragmoplast regions depleted of MTs as a result of lateral movements (usually geometric central region of the phragmoplast). Clusters of vesicles, which accumulate in relation to MTs which move, fuse and form the cell plate. After the fusion, the number and the length of MTs decrease. Several processes are superimposed and occur simultaneously. Also the cell plate is, as a rule, in different stages of development in various regions of the phragmoplast. The movements of MTs and fusion of the vesicles is complex and the details of these processes are not entirely clear. The data supplied here modify some generally accepted concepts of phragmoplast formation and development. This concerns the center of origin of new MTs, the moment when they arise, and the way they subsequently behave.  相似文献   

7.
Microtubules and microfilaments have been imaged in living plant cells and their dynamic changes recorded during division, growth and development. Carboxyfluorescein labeled brain tubulin has been injected into cells that are maintained in an active state in a culture chamber on the microscope stage. Subsequent imaging with the confocal microscope reveals microtubules in the preprophase band, the mitotic apparatus, the phragmoplast, and the cortical array. The structural changes of these microtubules have been observed during transitional stages. In addition, their dynamic features are demonstrated by depolymerization in elevated calcium, low temperature, and in the drug oryzalin, and by repolymerization when returned to normal conditions. Examination of living Tradescantia stamen hair cells, which have been injected with fluorescent phalloidin to label the actin microfilaments, reveals hitherto undisclosed aspects of the preparation of the division site and dynamics of the phragmoplast cytoskeleton. During prophase microfilaments occur throughout the cell cortex, with those in the region of the preprophase band becoming transversely aligned. At nuclear envelope breakdown, these specifically disassemble, leaving a circumferential zone from which microfilaments remain absent throughout division. During cytokinesis microfilaments arise within the phragmoplast, oriented parallel to the microtubules, but excluded from the zone where the MTs overlap and where cell plate vesicles aggregate. The phragmoplast microfilaments, in a manner similar to microtubules, shorten in length, expand in girth, and eventually disassemble when the cell plate is complete.  相似文献   

8.
The cell plate is the new cell wall, with bordering plasma membrane, that is formed between two daughter cells in plants, and it is formed by fusion of vesicles (approximately 60 nm). To start to determine physical properties of cell plate forming vesicles for their transport through the phragmoplast, and fusion with each other, we microinjected fluorescent synthetic lipid vesicles that were made of 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) into Tradescantia virginiana stamen hair cells. During interphase, the 60-nm wide DOPG vesicles moved inside the cytoplasm comparably to organelles. During cytokinesis, they were transported through the phragmoplast and accumulated in the cell plate region together with the endogenous vesicles, even inside the central cell plate region. Because at this stage microtubules are virtually absent from that region, while actin filaments are present, actin filaments may have a role in the transport of vesicles toward the cell plate. Unlike the endogenous vesicles, the synthetic DOPG vesicles did not fuse with the developing cell plate. Instead, they redistributed into the cytoplasm of the daughter cells upon completion of cytokinesis. Because the redistribution of the vesicles occurs when actin filaments disappear from the phragmoplast, actin filaments may be involved in keeping the vesicles inside the developing cell plate region.  相似文献   

9.
Song K  Jang M  Kim SY  Lee G  Lee GJ  Kim DH  Lee Y  Cho W  Hwang I 《Plant physiology》2012,159(3):1013-1025
Cytokinesis is the process of partitioning the cytoplasm of a dividing cell, thereby completing mitosis. Cytokinesis in the plant cell is achieved by the formation of a new cell wall between daughter nuclei using components carried in Golgi-derived vesicles that accumulate at the midplane of the phragmoplast and fuse to form the cell plate. Proteins that play major roles in the development of the cell plate in plant cells are not well defined. Here, we report that an AP180 amino-terminal homology/epsin amino-terminal homology domain-containing protein from Arabidopsis (Arabidopsis thaliana) is involved in clathrin-coated vesicle formation from the cell plate. Arabidopsis Epsin-like Clathrin Adaptor1 (AtECA1; At2g01600) and its homologous proteins AtECA2 and AtECA4 localize to the growing cell plate in cells undergoing cytokinesis and also to the plasma membrane and endosomes in nondividing cells. AtECA1 (At2g01600) does not localize to nascent cell plates but localizes at higher levels to expanding cell plates even after the cell plate fuses with the parental plasma membrane. The temporal and spatial localization patterns of AtECA1 overlap most closely with those of the clathrin light chain. In vitro protein interaction assays revealed that AtECA1 binds to the clathrin H chain via its carboxyl-terminal domain. These results suggest that these AP180 amino-terminal homology/epsin amino-terminal homology domain-containing proteins, AtECA1, AtECA2, and AtECA4, may function as adaptors of clathrin-coated vesicles budding from the cell plate.  相似文献   

10.

Background  

Plant cells divide by the formation of new cross walls, known as cell plates, from the center to periphery of each dividing cell. Formation of the cell plate occurs in the phragmoplast, a complex structure composed of membranes, microtubules (MTs) and actin microfilaments (MFs). Disruption of phragmoplast MTs was previously found to completely inhibit cell plate formation and expansion, indicative of their crucial role in the transport of cell plate membranes and materials. In contrast, disruption of MFs only delays cell plate expansion but does not completely inhibit cell plate formation. Despite such findings, the significance and molecular mechanisms of MTs and MFs remain largely unknown.  相似文献   

11.
Summary The distribution of F-actin in the phragmoplast/cell plate complex of formaldehyde-fixedAllium root cells was visualized with rhodaminephalloidin (RP). Increased RP fluorescence appears in late anaphase in a broad zone between separating chromosomes. The fluorescence is mostly amorphous in appearance and does not resemble the distinct actin fibers seen in interphase cells. The actin becomes more concentrated near the midplane by telophase and takes the form of a relatively bright layer of fluorescence adjacent to the forming cell plate. This distribution differs markedly from that of phragmoplast microtubules (MTs) which extend back from the plate toward the daughter nuclei. F-actin continues to accumulate in new parts of the expanding phragmoplast, while RP fluorescence gradually decreases near older portions of the plate. It disappears completely near the new wall in most interphase cells. Treatment of root tips with cytochalasin B or D before fixation markedly reduces RP fluorescence, but phragmoplast MTs remain. Colchicine or oryzalin treatment leads to the disappearance of both phragmoplast actin and MTs. The possible function of actin in the phragmoplast/cell plate complex is discussed.Abbreviations CB cytochalasin B - CD cytochalasin D - CIPC isopropyl N-(3-chlorophenyl-)carbamate - DIC differential interference contrast - MT microtubule - PBS phosphate buffered saline - PM plasmalemma - RP rhodamine-phalloidin  相似文献   

12.
Lee YR  Liu B 《Current biology : CB》2000,10(13):797-800
The phragmoplast executes cytokinesis in higher plants. The major components of the phragmoplast are microtubules, which are arranged in two mirror-image arrays perpendicular to the division plane [1]. The plus ends of these microtubules are located near the site of the future cell plate. Golgi-derived vesicles are transported along microtubules towards the plus ends to deliver materials bound for the cell plate [2] [3]. During cell division, rapid microtubule reorganization in the phragmoplast requires the orchestrated activities of microtubule motor proteins such as kinesins. We isolated an Arabidopsis cDNA clone of a gene encoding an amino-terminal motor kinesin, AtPAKRP1, and have determined the partial sequence of its rice homolog. Immunofluorescence experiments with two sets of specific antibodies revealed consistent localization of AtPAKRP1 and its homolog in Arabidopsis and rice cells undergoing anaphase, telophase and cytokinesis. AtPAKRP1 started to accumulate along microtubules towards the spindle midzone during late anaphase. Once the phragmoplast microtubule array was established, AtPAKRP1 conspicuously localized to microtubules near the future cell plate. Our results provide evidence that AtPAKRP1 is a hitherto unknown motor that may take part in the establishment and/or maintenance of the phragmoplast microtubule array.  相似文献   

13.
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51–154) is the key domain for binding MTs, and N-CC1(51–125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.  相似文献   

14.
Structural changes of microtubules (MTs) in the generative cell (GC) of Amaryllis vittara Alt. during mitosis in pollen tube have been investigated with electron microscopy. The division cycle was completed approximately within 12 h. During prophase, the MTs bundles distributed in the cortex of the GC, they were less and shorter than that before mitosis, some of which beginning to be near the nucleus. When the chromatin condensed and the GC entered metaphase, the MTs increased in number and distributed among the chromosomes (CHs) in the original nuclear zone, but they were not arranged in distinct bundlesed. Some of them connected with the CHs to form kinetochore MTs (KMTs), where as the cortical MTs in prophase still remained there. During metaphase, the CHs were arranged on the equartor forming a metaphase plate, and all the MTs formed a diffuse spindle. When the GC entered anaphase, the KMTs were shortened and they were involved in the segregation of the CHs into two groups. The MTs were much more and focused in the two polar regions. In late anaphase, while the MTs still existed at the poles, rich phragmoplast MTs appeared in the equator zone and the precusors of cell plate (CP) aggregated in the middle of the phragmoplast. When the GC entered telophase, the CHs diffused as chromatin, and phragmoplast MTs extended between the two newly formed nuclear envelops and even through the CP While the polar MTs and KMTs disappeared, the MTs in the newly formed sperm cells were different from that of the GC.  相似文献   

15.
《The Journal of cell biology》1995,130(6):1345-1357
Cell plate formation in tobacco root tips and synchronized dividing suspension cultured tobacco BY-2 cells was examined using cryofixation and immunocytochemical methods. Due to the much improved preservation of the cells, many new structural intermediates have been resolved, which has led to a new model of cell plate formation in higher plants. Our electron micrographs demonstrate that cell plate formation consists of the following stages: (1) the arrival of Golgi-derived vesicles in the equatorial plane, (2) the formation of thin (20 +/- 6 nm) tubes that grow out of individual vesicles and fuse with others giving rise to a continuous, interwoven, tubulo-vesicular network, (3) the consolidation of the tubulo-vesicular network into an interwoven smooth tubular network rich in callose and then into a fenestrated plate-like structure, (4) the formation of hundreds of finger-like projections at the margins of the cell plate that fuse with the parent cell membrane, and (5) cell plate maturation that includes closing of the plate fenestrae and cellulose synthesis. Although this is a temporal chain of events, a developing cell plate may be simultaneously involved in all of these stages because cell plate formation starts in the cell center and then progresses centrifugally towards the cell periphery. The "leading edge" of the expanding cell plate is associated with the phragmoplast microtubule domain that becomes concentrically displaced during this process. Thus, cell plate formation can be summarized into two phases: first the formation of a membrane network in association with the phragmoplast microtubule domain; second, cell wall assembly within this network after displacement of the microtubules. The phragmoplast microtubules end in a filamentous matrix that encompasses the delicate tubulo-vesicular networks but not the tubular networks and fenestrated plates. Clathrin-coated buds/vesicles and multivesicular bodies are also typical features of the network stages of cell plate formation, suggesting that excess membrane material may be recycled in a selective manner. Immunolabeling data indicate that callose is the predominant lumenal component of forming cell plates and that it forms a coat-like structure on the membrane surface. We postulate that callose both helps to mechanically stabilize the early delicate membrane networks of forming cell plates, and to create a spreading force that widens the tubules and converts them into plate-like structures. Cellulose is first detected in the late smooth tubular network stage and its appearance seems to coincide with the flattening and stiffening of the cell plate.  相似文献   

16.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

17.
用透射电镜的方法,对朱顶红(Am aryllisvittata Ait.)花粉管中生殖细胞的分裂过程中微管分布和结构形态变化进行了观察,获得如下主要的结果:有丝分裂前期,微管的数量较分裂前减少并变短,靠近细胞核分布。分裂前中期,微管出现于原来的核区并与染色体发生联系,形成着丝点微管。分裂中期,染色体排列于赤道面上形成赤道板,微管构成纺锤体。分裂后期,染色体分成两群,被缩短的着丝点微管拉向两极。在纺锤体两极的微管汇聚。后期的晚期,当极的微管尚未消失时,在赤道区域出现丰富的成膜体微管,在成膜体中央,细胞板前体物聚集。分裂末期,极微管和着丝点微管消失,成膜体微管在新形成的核膜和细胞板间扩展并穿过细胞板  相似文献   

18.
Summary Young leaves ofNicotiana tabacum were fixed in glutaraldehyde-formaldehyde followed by osmium tetroxide. The fine structure of dividing cells was studied. Before prophase a band of microtubules was observed between the nucleus and the cell wall at a position judged as the future plane of division. The microtubules in the band are 4–6 units deep and relatively closely packed, giving sections of the band a characteristic appearance. Micro-tubules of the mitotic spindle, the phragmoplast, and the preprophase band are morphologically similar. Some of the microtubules of the mitotic spindle and the phragmoplast have an undulate appearance. It is suggested that the undulate microtubules may have been fixed at a time when microwaves were traveling along them. The cell plate is formed by a fusion of small smooth surfaced vesicles and small coated vesicles. Fusion of small vesicles results first in larger vesicles and then in a meshwork of new cell-wall material surrounded by new regions of plasma membrane. Most of the vesicles are derived from dictyosomes and may be produced before and during prophase as well as during later stages of division. The ER may also contribute some vesicles to the cell plate.  相似文献   

19.
Summary The aim of this study was to search for uncharacterized components of the plant cytoskeleton using monoclonal antibodies raised against spermatozoids of the fernPteridium (Marc et al. 1988). The cellular distribution of crossreacting immunoreactive material during the division cycle in wheat root tip cells was determined by immunofluorescence microscopy and compared to the fluorescence pattern obtained with antitubulin. Five antibodies are of special interest. Pas1D3 and Pas5F4 detect a diffuse cytoplasmic material, which, during mitosis, follows the distribution of microtubules (MTs) at the nuclear surface and in the preprophase band (PPB), spindle and phragmoplast. The immunoreactive material codistributes specifically with MT arrays of the mitotic apparatus and does not associate with interphase cortical MTs. Pas5D8 is relevant to the PPB and spatial control of cytokinesis. It binds in a thin layer at the cytoplasmic surface throughout the cell cycle, except when its coverage is transiently interrupted by an exclusion zone at the PPB site and later at the same site when the phragmoplast fuses with the parental cell wall.Pas2G6 reacts with a component of basal bodies and the flagellar band in thePteridium spermatozoid and recognizes irregularly shaped cytoplasmic vesicles in wheat cells. During interphase these particles form a cortical network.Pas6D7 binds to dictyosomes and dictyosome vesicles. At anaphase the vesicles accumulate at the equator and subsequently condense into the cell plate.Abbreviations MT microtubule - PPB preprophase band  相似文献   

20.
In plant cells, Golgi vesicles are transported to the division plane to fuse with each other, forming the cell plate, the initial membrane-bordered cell wall separating daughter cells. Vesicles, but not organelles, move through the phragmoplast, which consists of two opposing cylinders of microtubules and actin filaments, interlaced with endoplasmic reticulum membrane. To study physical aspects of this transport/inhibition process, we microinjected fluorescent synthetic 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles and polystyrene beads into Tradescantia virginiana stamen hair cells. The phragmoplast was nonselective for DOPG vesicles of a size up to 150 nm in diameter but was a physical barrier for polystyrene beads having a diameter of 20 and 40 nm and also when beads were coated with the same DOPG membrane. We conclude that stiffness is a parameter for vesicle transit through the phragmoplast and discuss that cytoskeleton configurations can physically block such transit.Cells and their constituents are physical entities, and next to chemical interactions, cell structures are determinants of cell behavior. Therefore, apart from techniques to image living cells at the subcellular level, experiments are needed that probe physical parameters important in cell function in vivo. We took the plant phragmoplast structure to answer the question whether the physical aspect “stiffness” is a factor in the inhibition of transport through this structure by microinjecting synthetic vesicles and polystyrene beads in Tradescantia virginiana stamen hair cells during cytokinesis, when the phragmoplast is essential for partitioning the cytoplasm between two daughter cells. Plant cells partition by producing a cell plate made of fused 60- to 80-nm-diameter vesicles (Staehelin and Hepler, 1996; Jürgens, 2005) proven to be Golgi vesicles (Reichardt et al., 2007). Their content becomes the new cell wall and their membranes become the daughter cell plasma membranes. The phragmoplast consists of two opposing cylinders of microtubules and actin filaments, interlaced with similarly aligned endoplasmic reticulum (ER) membranes. This phragmoplast cytoskeleton is the transport vehicle for Golgi vesicles to the plane where the cell plate is being formed (Staehelin and Hepler, 1996; Valster et al., 1997), keeps them in this plane (Esseling-Ozdoba et al., 2008b), where they fuse with each other (Samuels et al., 1995; Otegui et al., 2001; Seguí-Simarro et al., 2004), and assists in the proper attachment of the cell plate to the parental cell wall (Valster et al., 1997; Molchan et al., 2002). Transit of organelles, including Golgi bodies, is inhibited (Staehelin and Hepler, 1996; Nebenführ et al., 2000; Seguí-Simarro et al., 2004). Most of these data are known from static electron microscopy images. Electron microscopy after high-pressure freezing and freeze substitution (Thijsen et al., 1998) and electron tomography studies (Otegui et al., 2001; Seguí-Simarro et al., 2004; Austin et al., 2005) show that, in the early stage of cell plate formation in the center and later at the phragmoplast border, microtubules are aligned parallel to each other at distances of 20 to 100 nm. Keeping in mind that also actin filaments and ER membranes, aligned in the same orientation, are present between the microtubules, this leaves little room for the cell plate-forming vesicles during their transport through this phragmoplast.Clearly, during the past decade, significant progress has been made in the elucidation of the structural organization of cell plate-forming phragmoplasts, which has set the stage for studies to elucidate physical properties of phragmoplasts. The experimental approach we use is injecting particulate and vesicular fluorescent probes into living and dividing cells and observing the extent to which such probes can enter the phragmoplast and can be transported to the cell plate region. We have shown before that synthetic lipid 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles of 60 nm diameter are transported through the phragmoplast, accumulate, and are kept in the cell plate region but do not fuse (Esseling-Ozdoba et al., 2008b). Now, we asked whether similar, flexible, synthetic lipid (DOPG) vesicles of various sizes, smaller and larger than endogenous vesicles, as well as stiff polystyrene beads, and such beads coated with the DOPG membrane, are transported through the phragmoplast and enter the plane where the cell plate is being formed, a question pertaining to a physical property of the phragmoplast. Our principal finding is that injected synthetic vesicles up to 150 nm diameter can enter and be transported to the cell plate region, where they accumulate but do not become incorporated into the cell plate. In contrast, polystyrene beads, the noncoated ones and those coated with the same lipid as the vesicles with diameters of 20 and 40 nm, can enter phragmoplasts but cannot be transported to the cell plate region, and the 40-nm beads slow cell plate formation, possibly by interfering with the delivery of normal, cell plate-forming vesicles to the cell plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号