首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms.However, fungi being eukaryotes, the challenge is greater than for bacterial infections because antifungal agents are often toxic towards eukaryotic host cells. Whilst there is extensive literature on antibacterial coatings, a far lesser body of literature exists on surfaces or coatings that prevent attachment and biofilm formation on medical devices by fungal pathogens. Here we review strategies for the design and fabrication of medical devices with antifungal surfaces. We also survey the microbiology literature on fundamental mechanisms by which fungi attach and spread on natural and synthetic surfaces. Research in this field requires close collaboration between biomaterials scientists, microbiologists and clinicians; we consider progress in the molecular understanding of fungal recognition of, and attachment to, suitable surfaces, and of ensuing metabolic changes, to be essential for designing rational approaches towards effective antifungal coatings, rather than empirical trial of coatings.  相似文献   

2.
Antibody-mediated protective immunity in fungal infections   总被引:2,自引:0,他引:2  
The host response to fungal infection is the result of a complex interaction between the pathogen and the host's innate and adaptive immune system. Cell-mediated immunity is widely considered to be critical for the successful outcome of fungal infections. However, in recent years numerous studies have established that certain antibodies may play an important role in host immunoprotection against pathogenic fungi, through interaction with different cellular targets, such as mannans, heat shock proteins, capsular polysaccharides, surface proteins, and yeast killer toxin receptors, with mechanisms of action sometimes still undefined. This review summarizes the latest findings on the role of different types of antibodies in the antifungal defense against infections caused by epidemiologically important fungi, such as Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and others. New perspectives of antibody-mediated therapy, based on the availability of monoclonal and recombinant antibodies as well as genetically engineered antibody fragments of defined specificity, will be also envisaged and discussed.  相似文献   

3.
As fungal infections are becoming more prevalent in the medical or agricultural fields, novel and more efficient antifungal agents are badly needed. Within the scope of developing new strategies for the management of fungal infections, antifungal compounds that target essential fungal cell wall components are highly preferable. Ideally, newly developed antimycotics should also combine major aspects such as sustainability, high efficacy, limited toxicity and low costs of production. A naturally derived molecule that possesses all the desired characteristics is the antifungal protein (AFP) secreted by the filamentous ascomycete Aspergillus giganteus. AFP is a small, basic and cysteine-rich peptide that exerts extremely potent antifungal activity against human- and plant-pathogenic fungi without affecting the viability of bacteria, yeast, plant and mammalian cells. This review summarises the current knowledge of the structure, mode of action and expression of AFP, and highlights similarities and differences concerning these issues between AFP and its related proteins from other Ascomycetes. Furthermore, the potential use of AFP in the combat against fungal contaminations and infections will be discussed.  相似文献   

4.
BackgroundThe number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated.MethodsIn this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed.ResultsIt is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions.ConclusionsNew BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.  相似文献   

5.
In recent years the increase in frequency of fungal infections with Candida sp. was noticed. These infections are connected with ability of Candida sp. to form biofilm on surfaces of biomaterials used in medicine. Furthermore fungal infections make serious therapeutic problems because ofbiofilm resistance to antifungal agents actually. The aim of the study was to evaluate the susceptibility to antifungal agents of Candida sp. and their ability to form biofilm on different biomaterials. 50 strains of Candida sp. isolated from patients of University Hospital No. 1 of dr A. Jurasz in Bydgoszcz were examined. API Candida (bioMérieux) tests were used to identify Candida sp. strains. The susceptibility of the yeast strains to antifungal agents was evaluated by ATB FUNGUS 2 INT (bioMérieux) tests. The susceptibility of examined strains to voriconazole, posaconazole, caspofungin and anidulafungin was assessed by means ofEtests (AB BIODISK) method employing drug concentrations from 0,002 to 32 microg/ml. All analysed strains were susceptible to amphotericin B and caspofungin. Biofilm formation on different biomaterials (silicon, latex, polychloride vinyl, polypropylene, nylon) was measured after 72 hour incubation at 37 degrees C. All examined yeasts formed biofilm on all analysed biomaterials. The highest number of strains formed biofilm on surface of polychloride vinyl: 23 (92,0%) by C. albicans strains and 24 (96,0%) Candida non-albicans strains. The lowest number of the strains formed biofilm on the surface of nylon: 12 (48,0%) of C. albicans strains and 9 (36,0%) of Candida non-albicans strains. The studied strains resistant to azoles and anidulafungin display stronger ability to form biofilm on surfaces of all analysed biomaterials.  相似文献   

6.
Dermatophytoses are common superficial fungal infections affecting both humans and animals. They are provoked by filamentous fungi called dermatophytes specialized in the degradation of keratinized structures, which allows them to induce skin, hair and nail infections. Despite their high incidence, little investigation has been performed for the understanding of these infections compared to fungal opportunistic infections and most of the studies were based on in vitro experiments. The development of animal models for dermatophyte research is required to evaluate new treatments against dermatophytoses or to increase knowledge about fungal pathogenicity factors or host immune response mechanisms. The guinea pig has been the most often used animal model to evaluate efficacy of antifungal compounds against dermatophytes, while mouse models were preferred to study the immune response generated during the disease. Here, we review the relevant animal models that were developed for dermatophyte research and we discuss the advantages and disadvantages of the selected species, especially guinea pig and mouse.  相似文献   

7.
The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.  相似文献   

8.
9.
Antifungal photodynamic therapy   总被引:2,自引:0,他引:2  
In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kill microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthalocyanine photosensitisers. Importantly, considerable selectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections.  相似文献   

10.
Antifungal agents: mechanisms of action   总被引:16,自引:0,他引:16  
Clinical needs for novel antifungal agents have altered steadily with the rise and fall of AIDS-related mycoses, and the change in spectrum of fatal disseminated fungal infections that has accompanied changes in therapeutic immunosuppressive therapies. The search for new molecular targets for antifungals has generated considerable research using modern genomic approaches, so far without generating new agents for clinical use. Meanwhile, six new antifungal agents have just reached, or are approaching, the clinic. Three are new triazoles, with extremely broad antifungal spectra, and three are echinocandins, which inhibit synthesis of fungal cell wall polysaccharides--a new mode of action. In addition, the sordarins represent a novel class of agents that inhibit fungal protein synthesis. This review describes the targets and mechanisms of action of all classes of antifungal agents in clinical use or with clinical potential.  相似文献   

11.
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.  相似文献   

12.
An increasing trend of reports of rare fungal diseases has been observed to be mainly associated with the substantial increase of high-risk immunocompromised children, as well as with the selective pressure of antifungal drugs. On the other hand, recent reports have shown that several species of these rare fungi may also cause infections in immunocompetent children without obvious underlying conditions. The clinical spectrum of these infections, and most importantly their outcome, varies greatly, implying for a rather heterogenic group of pediatric infections. Various types of superficial and subcutaneous fungal infections, as well as systemic and disseminated life-threatening infections, have been reported. Prompt diagnosis and appropriate treatment of rare fungal diseases in children remains a great challenge. Several treatment options have been used, ranging from localized to combination treatment with extensive surgical excision and long-term antifungal therapy. We review contemporary data of rare fungal infections in pediatric patients focusing on epidemiology, mycology, management and outcome, published during the last three years.  相似文献   

13.
The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.  相似文献   

14.
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.  相似文献   

15.
《Fungal Biology Reviews》2014,28(2-3):56-69
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.  相似文献   

16.
Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis   总被引:14,自引:0,他引:14       下载免费PDF全文
Many plants produce low-molecular-weight compounds which inhibit the growth of phytopathogenic fungi in vitro. These compounds may be preformed inhibitors that are present constitutively in healthy plants (also known as phytoanticipins), or they may be synthesized in response to pathogen attack (phytoalexins). Successful pathogens must be able to circumvent or overcome these antifungal defenses, and this review focuses on the significance of fungal resistance to plant antibiotics as a mechanism of pathogenesis. There is increasing evidence that resistance of fungal pathogens to plant antibiotics can be important for pathogenicity, at least for some fungus-plant interactions. This evidence has emerged largely from studies of fungal degradative enzymes and also from experiments in which plants with altered levels of antifungal secondary metabolites were generated. Whereas the emphasis to date has been on degradative mechanisms of resistance of phytopathogenic fungi to antifungal secondary metabolites, in the future we are likely to see a rapid expansion in our knowledge of alternative mechanisms of resistance. These may include membrane efflux systems of the kind associated with multidrug resistance and innate resistance due to insensitivity of the target site. The manipulation of plant biosynthetic pathways to give altered antibiotic profiles will also be valuable in telling us more about the significance of antifungal secondary metabolites for plant defense and clearly has great potential for enhancing disease resistance for commercial purposes.  相似文献   

17.
Fungal resistance to plant antibiotics as a mechanism of pathogenesis.   总被引:12,自引:0,他引:12  
Many plants produce low-molecular-weight compounds which inhibit the growth of phytopathogenic fungi in vitro. These compounds may be preformed inhibitors that are present constitutively in healthy plants (also known as phytoanticipins), or they may be synthesized in response to pathogen attack (phytoalexins). Successful pathogens must be able to circumvent or overcome these antifungal defenses, and this review focuses on the significance of fungal resistance to plant antibiotics as a mechanism of pathogenesis. There is increasing evidence that resistance of fungal pathogens to plant antibiotics can be important for pathogenicity, at least for some fungus-plant interactions. This evidence has emerged largely from studies of fungal degradative enzymes and also from experiments in which plants with altered levels of antifungal secondary metabolites were generated. Whereas the emphasis to date has been on degradative mechanisms of resistance of phytopathogenic fungi to antifungal secondary metabolites, in the future we are likely to see a rapid expansion in our knowledge of alternative mechanisms of resistance. These may include membrane efflux systems of the kind associated with multidrug resistance and innate resistance due to insensitivity of the target site. The manipulation of plant biosynthetic pathways to give altered antibiotic profiles will also be valuable in telling us more about the significance of antifungal secondary metabolites for plant defense and clearly has great potential for enhancing disease resistance for commercial purposes.  相似文献   

18.
Invasive fungal infections remain significant clinical challenges and are associated with high morbidity and mortality in immunocompromised patients. Despite the availability of new antifungal agents, response rates against many of these infections remain suboptimal. In addition, many of the clinically available agents have limited oral bioavailability, are associated with adverse effects due to similarities between fungal and mammalian cells, or have significant drug-drug interactions. For these reasons, there is great interest in developing new antifungal drugs, including those with novel mechanisms of action. This article reviews the pharmacology, in vitro activity, and in vivo effectiveness of new antifungal agents, including members of new classes with novel mechanisms of action and at various stages of preclinical and clinical development. These agents include the triazole isavuconazole, the echinocandin aminocandin, the histone deacetylase inhibitor MGCD290, and the sordarin derivative FR290581.  相似文献   

19.
Life-threatening fungal infections have increased in recent years while treatment options remain limited. The development of vaccines against fungal pathogens represents a key advance sorely needed to combat the increasing fungal disease threat. Dendritic cells (DC) are uniquely able to shape antifungal immunity by initiating and modulating naive T?cell responses. Targeting DC may allow for the generation of potent vaccines against fungal pathogens. In the context of antifungal vaccine design, we describe the characteristics of the varied DC subsets, how DC recognize fungi, their function in immunity against fungal pathogens, and how DC can be targeted in order to create new antifungal vaccines. Ongoing studies continue to highlight the critical role of DC in antifungal immunity and will help guide DC-based vaccine strategies.  相似文献   

20.
李瑞莲  王倬  杜昱光 《微生物学报》2017,57(8):1206-1218
难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号