首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

2.
Extraction of oil from microalgae for biodiesel production: A review   总被引:2,自引:0,他引:2  
The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion.  相似文献   

3.
The problem of climate change arising mainly from CO2 emission is currently a critical environmental issue. Biofixation using microalgae has recently become an attractive approach to CO2 capture and recycling with additional benefits of downstream utilization and applications of the resulting microalgal biomass. This review summarizes the history and strategies of microalgal mitigation of CO2 emissions, photobioreactor systems used to cultivate microalgae for CO2 fixation, current microalgae harvesting methods, as well as applications of valuable by-products. It is of importance to select appropriate microalgal species to achieve an efficient and economically feasible CO2-emission mitigation process. The desired microalgae species should have a high growth rate, high CO2 fixation ability, low contamination risk, low operation cost, be easy to harvest and rich in valuable components in their biomass.  相似文献   

4.
For years intensive research has been done to improve the hemocompatibility of blood contacting vascular devices. Despite the enormous progress in physicochemical surface optimization technologies, the native endothelium still represents the ideal surface for blood contact. Numerous tissue engineering strategies aspired towards the endothelialization of graft surfaces to generate a non-thrombogenic barrier on artificial materials. A paradigm change in surface modification concepts is the in vivo endothelialization of vascular grafts by capturing circulating endothelial progenitor cells (EPCs) directly from the blood stream via biofunctionalized implant materials. Thereby, capture molecules are immobilized on artificial vascular grafts to mimic a pro-homing substrate for EPCs. In this review, different coating strategies for in vivo capturing of EPCs on synthetic implants are discussed. This therapeutic concept opens a new chapter in regenerative medicine by realizing the vision that every patient seeds his implants with his own progenitor cells to make the synthetic grafts unrecognizable for the body's rejection mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号