首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have utilized in vitro selection technology to develop allosteric ribozyme sensors that are specific for the small molecule analytes caffeine or aspartame. Caffeine- or aspartame-responsive ribozymes were converted into fluorescence-based RiboReporter™ sensor systems that were able to detect caffeine or aspartame in solution over a concentration range from 0.5 to 5 mM. With read-times as short as 5 min, these caffeine- or aspartame-dependent ribozymes function as highly specific and facile molecular sensors. Interestingly, successful isolation of allosteric ribozymes for the analytes described here was enabled by a novel selection strategy that incorporated elements of both modular design and activity-based selection methods typically used for generation of catalytic nucleic acids.  相似文献   

2.
3.
The identification of proficient target sites within long RNA molecules, as well as the most efficient ribozymes for each, is a major concern for the use of ribozymes as gene suppressers. In vitro selection methods using combinatorial libraries are powerful tools for the rapid elucidation of interactions between macromolecules, and have been successfully used for different types of ribozyme study. This paper describes a new method for selecting effective target sites within long RNAs using a combinatorial library of self-cleaving hairpin ribozymes that includes all possible specificities. The method also allows the identification of the most appropriate ribozyme for each identified site. Searching for targets within the lacZ gene with this strategy yielded a clearly accessible site. Sequence analysis of ribozymes identified two variants as the most appropriate for this site. Both selected ribozymes showed significant inhibitory activity in the cell milieu.  相似文献   

4.
We have investigated the relative merits of two commonly used methods for target site selection for ribozymes: secondary structure prediction (MFold program) and in vitro accessibility assays. A total of eight methylated ribozymes with DNA arms were synthesized and analyzed in a transient co-transfection assay in HeLa cells. Residual expression levels ranging from 23 to 72% were obtained with anti-PSKH1 ribozymes compared to cells transfected with an irrelevant control ribozyme. Ribozyme efficacy depended on both ribozyme concentration and the steady state expression levels of the target mRNA. Allylated ribozymes against a subset of the target sites generally displayed poorer efficacy than their methylated counterparts. This effect appeared to be influenced by in vivo accessibility of the target site. Ribozymes designed on the basis of either selection method displayed a wide range of efficacies with no significant differences in the average activities of the two groups of ribozymes. While in vitro accessibility assays had limited predictive power, there was a significant correlation between certain features of the predicted secondary structure of the target sequence and the efficacy of the corresponding ribozyme. Specifically, ribozyme efficacy appeared to be positively correlated with the presence of short stem regions and helices of low stability within their target sequences. There were no correlations with predicted free energy or loop length.  相似文献   

5.
6.
Ribozymes: Flexible molecular devices at work   总被引:1,自引:0,他引:1  
Talini G  Branciamore S  Gallori E 《Biochimie》2011,93(11):1998-2005
The discovery of ribozymes, RNAs with catalytic activity, revealed the extraordinary characteristic of this molecule, and corroborated the idea that RNA was the first informative polymer. The “RNA world” hypothesis asserts that the DNA/RNA/PROTEIN world arose from an earlier RNA world in which were present only RNA molecules able to perform both of the two functions performed separately by DNA and proteins in the present-day cells: the ability to transfer genetic information and to carry out catalytic activity.The catalytic properties of ribozymes are exclusively due to the capacity of RNA molecules to assume particular structures. Moreover, the structural versatility of RNA can allow to a single RNA sequence to fold in more than one structure, able to perform more than one function. In the first part of this work we will discuss the RNA plasticity, focusing on “bifunctional” ribozymes isolated by in vitro selection experiments, and on the consequences of this plasticity in the prospective of the emergence of new specific functions.The possibility that one sequence could have more than one structure/function, greatly increase the evolutionary potential of RNA, and the capacity of RNA to switch from a structure/function to another is probably one of the reasons of the evolutionary success also in modern-day cells. Naturally occurring ribozymes discovered in contemporary cells, demonstrate the crucial role that ribozymes still have in the modern protein world. In the second part of this paper we will discuss the capacity of natural ribozymes to modulate gene expression making use of their exclusive catalytic properties. Moreover, we will consider the possibility of their ancient origin.  相似文献   

7.
《Biotechnology advances》2019,37(8):107452
Ribozymes are functional RNA molecules that can catalyze biochemical reactions. Since the discovery of the first catalytic RNA, various functional ribozymes (e.g., self-cleaving ribozymes, splicing ribozymes, RNase P, etc.) have been uncovered, and their structures and mechanisms have been identified. Ribozymes have the advantage of possessing features of “RNA” molecules; hence, they are highly applicable for manipulating various biological systems. To fully employ ribozymes in a broad range of biological applications in synthetic biology, a variety of ribozymes have been developed and engineered. Here, we summarize the main features of ribozymes and the methods used for engineering their functions. We also describe the past and recent efforts towards exploiting ribozymes for effective and novel applications in synthetic biology. Based on studies on their significance in biological applications till date, ribozymes are expected to advance technologies in artificial biological systems.  相似文献   

8.
To exert control over RNA folding and catalysis, both molecular engineering strategies and in vitro selection techniques have been applied toward the development of allosteric ribozymes whose activities are regulated by the binding of specific effector molecules or ligands. We now describe the isolation and characterization of a new and considerably versatile RNA element that functions as a communication module to render disparate RNA folding domains interdependent. In contrast to some existing communication modules, the novel 9-nt RNA element is demonstrated to function similarly between a variety of catalysts that include the hepatitis delta virus, hammerhead, X motif and Tetrahymena group I ribozymes, and various ligand-binding domains. The data support a mechanistic model of RNA folding in which the element is comprised of both canonical and non-canonical base pairs and an unpaired nucleotide in the active, effector-bound conformation. Aside from enabling effector-controlled RNA function through rational design, the element can be utilized to identify sites in large RNAs that are susceptible to effector regulation.  相似文献   

9.
Catalytic RNAs are a genetic property not only of some particular viroids or viruses, but also are more common naturally among eukaryotes and even prokaryotes than earlier expected. However, the major interest in ribozymes results from their potential for development of “tailor-made” cDNA constructions designed to be transcribed into catalytic RNAs that will recognize by hybridization and destroy by specific cleavage their cellular or viral RNA targets. The efficiency of an antiviral ribozyme is determined by both the accessibility and sequence conservation of the target region, as well as the design of the ribozyme: its type, size, and composition of flanking sequences; expression rates; and cellular compartment localization. Until now the most frequently selected viral target is the human immunodeficiency virus, where an up to a 104-fold inhibition in its progeny production has been achieved. Although the first generation ribozymes focused on improvements in basic design and expression rates, more recently the efficiency of antiviral catalytic activity has been increased by employing polyribozymes and/or multitarget ribozymes, as well as special constructions to enhance the cellular co-compartmentation of the ribozyme with its viral RNA target.  相似文献   

10.

Background  

Allosteric ribozymes (aptazymes) that have extraordinary activation parameters have been generated in vitro by design and selection. For example, hammerhead and ligase ribozymes that are activated by small organic effectors and protein effectors have been selected from random sequence pools appended to extant ribozymes. Many ribozymes, especially self-splicing introns, are known control gene regulation or viral replication in vivo. We attempted to generate Group I self-splicing introns that were activated by a small organic effector, theophylline, and to show that such Group I aptazymes could mediate theophylline-dependent splicing in vivo.  相似文献   

11.
RNA double cleavage by a hairpin-derived twin ribozyme   总被引:4,自引:4,他引:0  
The hairpin ribozyme is a small catalytic RNA that catalyses reversible sequence-specific RNA hydrolysis in trans. It consists of two domains, which interact with each other by docking in an antiparallel fashion. There is a region between the two domains acting as a flexible hinge for interdomain interactions to occur. Hairpin ribozymes with reverse-joined domains have been constructed by dissecting the domains at the hinge and rejoining them in reverse order. We have used both the conventional and reverse-joined hairpin ribozymes for the design of a hairpin-derived twin ribozyme. We show that this twin ribozyme cleaves a suitable RNA substrate at two specific sites while maintaining the target specificity of the individual monoribozymes. For characterisation of the studied ribozymes we have evaluated a quantitative assay of sequence-specific ribozyme activity using fluorescently labelled RNA substrates in conjunction with an automated DNA sequencer. This assay was found to be applicable with hairpin and hairpin-derived ribozymes. The results demonstrate the potential of hairpin ribozymes for multi-target strategies of RNA cleavage and suggest the possibility for employing hairpin-derived twin ribozymes as powerful tools for RNA manipulation in vitro and in vivo.  相似文献   

12.
Small ribozymes have been regarded as living fossils of a prebiotic RNA world that would have remained in the genomes of modern organisms. In this study, we report the ultraconserved occurrence of hammerhead ribozymes in Amniota genomes (reptiles, birds and mammals, including humans), similar to those described previously in amphibians and platyhelminth parasites. The ribozymes mapped to intronic regions of different genes, such as the tumour suppressor RECK in birds and mammals, a mammalian tumour antigen and the dystrobrevin beta in lizards and birds. In vitro characterization confirmed a high self-cleavage activity, whereas analysis of RECK-expressed sequence tags revealed fusion events between the in vivo self-cleaved intron and U5 or U6 small nuclear RNA fragments. Together, these results suggest a conserved role for these ribozymes in messenger RNA biogenesis.  相似文献   

13.
The two group IC3 pre-tRNA introns from Azoarcus and Synechococcus share very analogous secondary structures. They are small group I ribozymes that possess only two peripheral domains, P2 and P9. However, the 3′-splice site hydrolysis activity of the Synechococcus ribozyme critically depends on P2 whereas that of Azoarcus does not, indicating that the structure–function relationships of the two ribozymes are strikingly different despite their structural resemblance. To identify the element(s) that determines the catalytic properties of these ribozymes, we undertook analyses of chimeric ribozymes prepared by swapping their structural elements. We found that the difference can be attributed to a small number of nucleotides within the conserved core region. Further analysis by employing in vitro selection revealed that a base triple interaction (P4bp3 × J6/7-2) is a critical element for determining activity and suggests the existence of a novel base quintuple involving the base triple P4bp5 × J8/7-5.  相似文献   

14.
The RNA world hypothesis describes a stage in the early evolution of life in which RNA served as genome and as the only genome-encoded catalyst. To test whether RNA world organisms could have used cyclic trimetaphosphate as an energy source, we developed an in vitro selection strategy for isolating ribozymes that catalyze the triphosphorylation of RNA 5′-hydroxyl groups with trimetaphosphate. Several active sequences were isolated, and one ribozyme was analyzed in more detail. The ribozyme was truncated to 96 nt, while retaining full activity. It was converted to a trans-format and reacted with rates of 0.16 min−1 under optimal conditions. The secondary structure appears to contain a four-helical junction motif. This study showed that ribozymes can use trimetaphosphate to triphosphorylate RNA 5′-hydroxyl groups and suggested that RNA world organisms could have used trimetaphosphate as their energy source.  相似文献   

15.
In vitro selection is a powerful tool that can be used to understand basic principles of molecular evolution. We used in vitro selection to understand how changes in length and the accumulation of point mutations enable the evolution of functional RNAs. Using RNA populations of various lengths, we performed a series of in vitro experiments to select for ribozymes with RNA ligase activity. We identified a core ribozyme structure that was robust to changes in RNA length, high levels of mutagenesis, and increased selection pressure. Elaboration on this core structure resulted in improved activity which we show is consistent with a larger trend among functional RNAs in which increasing motif size can lead to an exponential improvement in fitness. We conclude that elaboration on conserved core structures is a preferred mechanism in RNA evolution. This conclusion, drawn from selections of RNAs from random sequences, is consistent with proposed evolutionary histories of specific biological RNAs. More generally, our results indicate that modern RNA structures can be used to infer ancestral structures. Our observations also suggest a mechanism by which structural outcomes of early RNA evolution would be largely reproducible even though RNA fitness landscapes consist of disconnected clusters of functional sequences.  相似文献   

16.
Group I intron ribozymes can repair mutated mRNAs by replacing the 3′-terminal portion of the mRNA with their own 3′-exon. This trans-splicing reaction has the potential to treat genetic disorders and to selectively kill cancer cells or virus-infected cells. However, these ribozymes have not yet been used in therapy, partially due to a low in vivo trans-splicing efficiency. Previous strategies to improve the trans-splicing efficiencies focused on designing and testing individual ribozyme constructs. Here we describe a method that selects the most efficient ribozymes from millions of ribozyme variants. This method uses an in vivo rescue assay where the mRNA of an inactivated antibiotic resistance gene is repaired by trans-splicing group I intron ribozymes. Bacterial cells that express efficient trans-splicing ribozymes are able to grow on medium containing the antibiotic chloramphenicol. We randomized a 5′-terminal sequence of the Tetrahymena thermophila group I intron and screened a library with 9 × 106 ribozyme variants for the best trans-splicing activity. The resulting ribozymes showed increased trans-splicing efficiency and help the design of efficient trans-splicing ribozymes for different sequence contexts. This in vivo selection method can now be used to optimize any sequence in trans-splicing ribozymes.  相似文献   

17.
Inhibition of gene expression with ribozymes   总被引:5,自引:0,他引:5  
Summary 1. Ribozymes can be designed to cleavein trans, i.e. several substrate molecules can be turned over by one molecule of the catalytic RNA. Only small molecular weight ribozymes, or small ribozymes, are discussed in this review with particular emphasis on the hammerhead ribozyme as this has been most widely used for the inhibition of gene expression by cleavage of mRNAs.2. Cellular delivery of the ribozyme is of crucial importance for the success of inhibition of gene expression by this methodology. Two modes of delivery can be envisaged, endogenous and exogenous delivery. Of the former several variants exist, depending on the vector used. The latter is still in its infancy, even though chemical modification has rendered such ribozymes resistant against degradation by serum nucleases without impairment of catalytic efficiency.3. Various successful applications of ribozymes for the inhibition of gene expression are discussed, with particular emphasis on HIV1 and cancer targets. These examples demonstrate the promise of this methodology.  相似文献   

18.
ABSTRACT

Hammerhead ribozymes are a model system for studying molecular mechanism of RNA catalysis. Physicochemical data-driven mechanistic studies are an indispensable step towards understanding the catalysis of hammerhead ribozymes. Here we characterized a model RNA duplex with catalytically important sheared-type G12-A9 base pair and A9-G10.1 metal ion-binding motif in hammerhead ribozymes. By using high magnetic field NMR, all base proton signals, including catalytic residues, were unambiguously assigned. We further characterized structural features of this RNA molecule and found that it reflects the structural features of the A9-G10.1 motif of hammerhead ribozymes. Therefore, this RNA molecule is suitable for extracting an intrinsic physicochemical properties of catalytically important residues.  相似文献   

19.
In vitro display methods are superior tools for obtaining monoclonal antibodies. Although totally in vitro display methods, such as ribosome display and mRNA display, have the advantages of larger library sizes and quicker selection procedures compared with phage display, their applications have been limited to single-chain Fvs due to the requirement for linking of the mRNA and the nascent protein on the ribosome. Here we describe a different type of totally in vitro method, DNA display, that is applicable to heterodimeric Fab fragments: in vitro compartmentalization in water-in-oil emulsions allows the linking of an oligomeric protein and its encoding DNA with multiple ORFs. Since previously used emulsions impaired the synthesis of functional Fab fragments, we modified conditions for preparing emulsions, and identified conditions under which it was possible to enrich Fab fragments 106-fold per three rounds of affinity selection. Furthermore, we confirmed that genes encoding stable Fab fragments could be selected from a Fab fragment library with a randomized hydrophobic core in the constant region by applying heat treatment as a selection pressure. Since this method has all advantages of both phage display and totally in vitro display, it represents a new option for many applications using display methods.  相似文献   

20.
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号