首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs).

Methods

Real-time NMR using a range of artificial chromogenic, synthetic pseudo-natural and natural substrates was employed to determine the hydrolytic abilities and specificity of different Abfs.

Results

The way in which synthetic di-arabinofuranosylated substrates are hydrolyzed by Abfs mirrors the behavior of enzymes on natural arabinoxylo-oligosaccharide (AXOS). Family GH43 Abfs that are strictly specific for mono-substituted d-xylosyl moieties (AXH-m) do not hydrolyze synthetic di-arabinofuranosylated substrates, while those specific for di-substituted moieties (AXH-d) remove a single l-arabinofuranosyl (l-Araf) group. GH51 Abfs, which are supposedly AXH-m enzymes, can release l-Araf from disubstituted d-xylosyl moieties, when these are non-reducing terminal groups.

Conclusions and general significance

The present study reveals that although the activity of Abfs on artificial substrates can be quite different from that displayed on natural substrates, enzyme specificity is well conserved. This implies that carefully chosen artificial substrates bearing di-arabinofuranosyl d-xylosyl moieties are convenient tools to probe selectivity in new Abfs. Moreover, this study has further clarified the relative promiscuity of GH51 Abfs, which can apparently hydrolyze terminal disubstitutions in AXOS, albeit less efficiently than mono-substituted motifs.  相似文献   

2.
Hunter syndrome (mucopolysaccharidosis-II) is caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase. The assay of this sulfatase requires the use of α-l-iduronate glycosides containing a sulfate at the 2-position. We report a simple, three-step procedure for the introduction of sulfate at the 2-position starting with the methyl ester of α-l-iduronate glycosides. The procedure involves protection of the 2- and 4-hydroxyl groups of the iduronate moiety as the dibutyl stannylene acetal, selective sulfation with sulfur trioxide-trimethylamine, and deprotection of the methyl ester to afford the desired 2-sulfate in 61% overall yield.  相似文献   

3.
Penicillium funiculosum is an industrial fungus exploited for its capacity to secrete a wide array of glycosyl hydrolases (GHs) and glycosyl transferases (GTs). These enzymes are part of an enzymatic cocktail that is commercialized under the name RovabioExcel®, which is used as feed additive in animal nutrition. The genome sequence of this filamentous fungus has revealed a remarkable richness in several accessory enzymes, and notably in α-l-arabinofuranosidases (α-l-AFases) that participate in the hydrolysis of arabinoxylans (AX) in corn/wheat fibers used in poultry feed. Here, we report on the molecular and biochemical characterization of three GH62 family α-l-AFases encoding genes in this filamentous fungus. Amino acids sequences showed strong similarities (>65%) between them, as well with GH62 enzymes from other filamentous fungi. Interestingly, one of the three PfABF62, namely PfABF62c is unique in bearing at its N-terminus a canonical family 1 carbohydrate-binding module (CBM1) of 37 amino acids length, which was shown to help the protein to bind to microcrystalline cellulose. Also, this PfABF62c showed optimal pH and temperature of 2.8 and 50 °C, respectively, whereas optimal activity for PfABF62a and PfABF62b were measured at 40 °C and at pH ranging between 2.6 and 4.5. Arabinan and arabinoxylan, but no other sugars or polymers were found to augment the thermal transition of the three enzymes by 3–5 °C as measured by differential scanning fluorimetry. Finally, enzymatic hydrolysis fingerprints of heteroxylans allowed concluding that the mode of action of the GH62 enzymes from this fungal species was to remove arabinofuranosyl residues linked in position O-2 and O-3 of substituted xylose units in arabinoxylan chains.  相似文献   

4.
The title compound, used in the synthesis of glycopeptides and as a reference substance in the structural elucidation of glycoproteins, was synthesized by condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4,6-O-benzylidene-α-d-glucopyranosyl azide, followed by removal of the benzylidene group to give the disaccharide azide 6 and acetylation. The resulting fully acetylated disaccharide azide 7 was also obtained by treatment of the known 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-glucopyranose with hydrogen chloride and then with silver azide. The azide 7 was reduced in presence of platinum oxide (Adams' catalyst), and the resulting amine was condensed with 1-benzyl N-benzyloxycarbonyl-l-aspartate in the presence of N,N′-dicyclocarbodiimide. The removal of the protective group was accomplished by hydrogenolysis and O-deacetylation. In a second route, the disaccharide azide 6 was reduced and then condensed with 1-benzyl N-benzyloxycarbonyl-l-aspartate, and the resulting product hydrogenolyzed.  相似文献   

5.
The synthesis of two novel carbasugar analogues of α-l-iduronic acid is described in which the ring-oxygen is replaced by a methylene group. In analogy with the conformational equilibrium described for α-l-IdopA, the conformation of the carbasugars was investigated by 1H and 13C NMR spectroscopy. Hadamard transform NMR experiments were utilised for rapid acquisition of 1H,13C-HSQC spectra and efficient measurements of heteronuclear long-range coupling constants. Analysis of 1H NMR chemical shifts and JH,H coupling constants extracted by a total-lineshape fitting procedure in conjunction with JH,C coupling constants obtained by three different 2D NMR experiments, viz., 1H,13C-HSQC-HECADE, J-HMBC and IPAP-HSQC-TOCSY-HT, as well as effective proton-proton distances from 1D 1H,1H T-ROE and NOE experiments showed that the conformational equilibrium 4C1?2S5a?1C4 is shifted towards 4C1 as the predominant or exclusive conformation. These carbasugar bioisosteres of α-l-iduronic acid do not as monomers show the inherent flexibility that is anticipated to be necessary for biological activity.  相似文献   

6.
The presence of a fairly uncommon side chain 2-O-β-d-xylopyranosyl-α-l-arabinofuranosyl in arabinoxylans (AX) from eight different cereal by-products was investigated, using 1H NMR spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) after Shearzyme® (GH10 endo-1,4-β-d-xylanase) hydrolysis. This disaccharide side group was present in significant amounts in AX extracted from corn cobs and barley husks. For the first time, it was also detected in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Arabinoxylo-oligosaccharide (AXOS) containing the 2-O-β-d-Xylp-α-l-Araf side chain was purified from the oat spelt AX hydrolysate and the structure was fully analyzed using 1D and 2D NMR spectroscopy. The AXOS was identified as β-d-Xylp-(1→2)-α-l-Araf-(1→3)-β-d-Xylp-(1→4)-d-Xyl. To our knowledge, such a structure with 2-O-β-d-Xylp-α-l-Araf attached to the O-3 of the nonreducing end of xylobiose has not been described previously. New information on substitution of AX from various cereal by-products was obtained by combining NMR and enzyme-assisted HPAEC-PAD analysis.  相似文献   

7.
Benzylidenation of benzyl α-l-rhamnopyranoside (1) gave the exo- (2) and endo-2,3-O-benzylidene diastereomers (3), hydrogenolysis of which afforded the 3-benzyl and 2-benzyl ethers of 1, respectively. Hydrogenolysis of the 4-O-benzyl derivatives (14 and 15) of 2 and 3 yielded the 3,4-di-benzyl and 2,4-dibenzyl ethers of 1, whereas hydrolysis of 14 and 15 gave the 4-benzyl ether of 1. The 2,3-dibenzyl ether of 1 was synthesised via the 4-O-allyl derivative of 1.  相似文献   

8.
The structure of neoschaftoside is shown for the first time to be 6-C-β-d-glucopyranosyl-8-C-β-l-arabinopyranosylapigenin. A variety of chemical and spectroscopic techniques are involved.  相似文献   

9.
α-Bisabolol β-d-fucopyranoside, a cytotoxic naturally occurring compound, was efficiently synthesized along with five other α-bisabolol glycosides (β-d-glucoside, β-d-galactoside, α-d-mannoside, β-d-xyloside and α-l-rhamnoside). Glycosidation of α-bisabolol was performed using Schmidt’s inverse procedure and provided excellent yields (83-95%). Cytotoxicity was evaluated against a broad panel of cancerous cell lines including human and rat glioma (U-87, U-251 and GL-261) since the anticancer activity of α-bisabolol was previously demonstrated against brain tumor cell lines. The addition of a sugar moiety markedly increased α-bisabolol cytotoxicity in most cases. Among the synthesized glycosides, α-bisabolol α-l-rhamnopyranoside exhibited the strongest cytotoxic activity with IC50 ranging from 40 to 64 μM. According to ADME in silico predictions, this glycoside closely respects physicochemical parameters necessary to cross the blood-brain barrier passively.  相似文献   

10.
11.
Persubstituted derivatives of phenyl and ethyl 2-O-sulfonyl-1-thio-α-d-manno- and β-d-glucopyranosides were synthesized and reacted either with PhSNa or with MeSNa. The phenyl-1-thio compounds afforded the dithio-1,2-cis-axial/equatorial-α-d-glucopyranosides or dithio-1,2-cis-equatorial/axial-β-d-mannopyranosides by means of SN2 type of reactions. Starting from the ethyl-1-thio derivatives intramolecular 1,2-thio-migration took place predominantly. In the case of mannosides both nucleophilic reagents facilitate the formation of 1-SPh- or 1-SEt glycals by elimination. The formation of unsubstituted glycal could also be observed from the ethyl-1-thio derivatives, especially by using PhSNa as a nucleophile. The 1,2-dithio-glycosides are glycosyl donors affording 1,2-trans-2-thio-glycosides.  相似文献   

12.
A simple and reliable continuous assay for measurement of α-mannosidase activity is described and demonstrated for analysis with two recombinant human enzymes using the new substrate resorufin α-d-mannopyranoside (Res-Man). The product of enzyme reaction, resorufin, exhibits fluorescence emission at 585 nm with excitation at 571 nm and has a pKa of 5.8, allowing continuous measurement of fluorescence turnover at or near physiological pH values for human lysosomal and Drosophila Golgi α-mannosidases. The assay performed using recombinant Drosophila Golgi α-mannosidase (dGMII) has been shown to give the kinetic parameters Km of 200 μM and Vmax of 11 nmol/min per nmol dGMII. Methods for performing the assay using several concentrations of the known α-mannosidase inhibitor swainsonine are also presented, demonstrating a potential for use of the assay as a simple method for high-throughput screening of inhibitors potentially useful in cancer treatment.  相似文献   

13.
This article describes a successful application of l-lysine ε-oxidase (EC 1.4.3.20) for l-lysine determination. l-Lysine ε-oxidase was isolated from culture supernatant of Marinomonas mediterranea NBRC 103028T and was used for l-lysine determination. Comparison of the characteristics of l-lysine ε-oxidase with l-lysine α-oxidase, a commercial enzyme used for l-lysine determination, suggests that the use of l-lysine ε-oxidase would be more valuable for the determination of l-lysine because of its selectivity and sensitivity, especially in samples with low l-lysine concentration. The enzyme acted only on l-lysine and l-ornithine, to which the relative activity was only 3.4% of that on l-lysine. The value obtained by the colorimetric assay using l-lysine ε-oxidase and horseradish peroxidase was not affected by l-ornithine. The enzyme also shows a higher affinity for l-lysine (Km = 0.0018 mM). l-Lysine determination using l-lysine ε-oxidase in human plasma and serum was examined. The measured values were close to values determined by instrumental analyses using the precolumn AccQ·Tag Ultra Derivatization Kit. These results suggest that l-lysine ε-oxidase can be used for diagnosis based on plasma l-lysine concentration. This is the first report on the application of l-lysine ε-oxidase.  相似文献   

14.
The first total synthesis of 7-O-β-d-glucopyranosyl-4′-O-α-l-rhamnopyranosyl apigenin 1, which exhibits good anti-hepatitis B virus and anti-stroke activities, was accomplished in six steps and 20% overall yield from apigenin. Another synthetic route, in which the target was obtained in seven steps, was also developed to prove the utility of a hexanoyl ester-based orthogonal protection strategy. The hexanoyl protection strategy provided all the flavonoid intermediates with good solubility and reactivity, enabled efficient selective protection and glycosylation, and provided a practical and effective synthetic strategy for flavonoids, starting from commercially available flavone.  相似文献   

15.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β-D-fructofuranosyl α-D-galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

16.
The azide displacement reaction on methyl 6-deoxy-4-O-methanesulphonyl-2,3-di-O-methyl-α-l-talopyranoside (6) in N,N-dimethylformamide yielded methyl 4,6-dideoxy-2,3-di-O-methyl-α-l-threo-hex-3-enopyranoside (7, ca. 50%), methyl 4,6-dideoxy-2,3-di-O-methyl-β-d-erythro-hex-4-enopyranoside (8, ca. 10%), and methyl 4-azido-4,6-dideoxy-2,3-di-O-methyl-α-l-mannopyranoside (9, ca. 40%). The corresponding azide 14 (20%) and the unsaturated sugars 12 (68%) and 13 (12%) were obtained from a comparable reaction on benzyl 6-deoxy-4-O-methanesulphonyl-2,3-di-O-methyl-α-l-talopyranoside (11).  相似文献   

17.
Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-l-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-l-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-l-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-l-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn2+ coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-l-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.  相似文献   

18.
ε-Poly-l-lysine (ε-PL)2 is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) 3 levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) 4 indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) 5 regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence.  相似文献   

19.
β-D-Galactofuranose 1-phosphate (2) has been synthesised with high anomeric specificity, by a number of conventional routes. The product, isolated as an amorphous, hydrated barium salt, was characterised as a crystalline strychine salt. Periodate oxidation of 2, followed by borohydride reduction, confirmed its furanosidic nature, Some mechanistic aspects of the phosphorylations are discussed. Improved procedures for the preparation of β-D-galactofuranose pentaacetate, directly from D-galactose, are also described.  相似文献   

20.
Disaccharides composed of a β-d-psicofuranosyl unit were prepared by the glycosylation reaction of monosaccharide acceptors including three 2,3,4,6-tetra-O-protected hexopyranoses with a d-psicofuranosyl benzyl phthalate derivative (4). A β-d-psicofuranosidic bond was formed by the TMSOTf-promoted reaction with high selectivity. Removal of the O-protecting groups from the resulting α-d-hexopyranosyl β-d-psicofuranosides furnished the first chemical synthesis of α-d-gluco-, α-d-galacto-, and α-d-mannopyranosyl β-d-psicofuranosides. The common β-d-psicofuranosyl donor 4 was derived efficiently from d-psicose in five steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号