首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibromyalgia (FM) is among the most common chronic pain syndromes encountered in clinical practice, but there is limited understanding of FM pathogenesis. We examined the contribution of transient receptor potential vanilloid 1 (TRPV1) and TRPV4 channels to chronic pain in the repeated acid injection mouse model of FM and the potential therapeutic efficacy of electroacupuncture. Electroacupuncture (EA) at the bilateral Zusanli (ST36) acupoint reduced the long-lasting mechanical hyperalgesia induced by repeated acid saline (pH 4) injection in mouse hindpaw. Isolated L5 dorsal root ganglion (DRG) neurons from FM model mice (FM group) were hyperexcitable, an effect reversed by EA pretreatment (FM + EA group). The increase in mechanical hyperalgesia was also accompanied by upregulation of TRPV1 expression and phosphoactivation of extracellular signal regulated kinase (pERK) in the DRG, whereas DRG expression levels of TRPV4, p-p38, and p-JNK were unaltered. Blockade of TRPV1, which was achieved using TRPV1 knockout mice or via antagonist injection, and pERK suppressed development of FM-like pain. Both TRPV1 and TRPV4 protein expression levels were increased in the spinal cord (SC) of model mice, and EA at the ST36 acupoint decreased overexpression. This study strongly suggests that DRG TRPV1 overexpression and pERK signaling, as well as SC TRPV1 and TRPV4 overexpression, mediate hyperalgesia in a mouse FM pain model. The therapeutic efficacy of EA may result from the reversal of these changes in pain transmission pathways.  相似文献   

2.
Cytoplasmic polyadenylation element binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein that downregulates translation of multiple plasticity-related proteins (PRPs) at the glutamatergic synapses. Activity-induced synthesis of PRPs maintains long-lasting synaptic changes that are critical for memory consolidation and chronic pain manifestation. CPEB3-knockout (KO) mice show aberrant hippocampus-related plasticity and memory, so we investigated whether CPEB3 might have a role in nociception-associated plasticity. CPEB3 is widely expressed in the brain and peripheral afferent sensory neurons. CPEB3-KO mice with normal mechanosensation showed hypersensitivity to noxious heat. In the complete Freund''s adjuvant (CFA)-induced inflammatory pain model, CPEB3-KO animals showed normal thermal hyperalgesia and transiently enhanced mechanical hyperalgesia. Translation of transient receptor potential vanilloid 1 (TRPV1) RNA was suppressed by CPEB3 in dorsal root ganglia (DRG), whereas CFA-induced inflammation reversed this inhibition. Moreover, CPEB3/TRPV1 double-KO mice behaved like TRPV1-KO mice, with severely impaired thermosensation and thermal hyperalgesia. An enhanced thermal response was recapitulated in non-inflamed but not inflamed conditional-KO mice, with cpeb3 gene ablated mostly but not completely, in small-diameter nociceptive DRG neurons. CPEB3-regulated translation of TRPV1 RNA may play a role in fine-tuning thermal sensitivity of nociceptors.  相似文献   

3.
Unaccustomed strenuous exercise that includes lengthening contraction (LC) often causes tenderness and movement related pain after some delay (delayed-onset muscle soreness, DOMS). We previously demonstrated that nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are up-regulated in exercised muscle through up-regulation of cyclooxygenase (COX)-2, and they sensitized nociceptors resulting in mechanical hyperalgesia. There is also a study showing that transient receptor potential (TRP) ion channels are involved in DOMS. Here we examined whether and how TRPV1 and/or TRPV4 are involved in DOMS. We firstly evaluated a method to measure the mechanical withdrawal threshold of the deep tissues in wild-type (WT) mice with a modified Randall-Selitto apparatus. WT, TRPV1−/− and TRPV4−/− mice were then subjected to LC. Another group of mice received injection of murine NGF-2.5S or GDNF to the lateral gastrocnemius (LGC) muscle. Before and after these treatments the mechanical withdrawal threshold of LGC was evaluated. The change in expression of NGF, GDNF and COX-2 mRNA in the muscle was examined using real-time RT-PCR. In WT mice, mechanical hyperalgesia was observed 6–24 h after LC and 1–24 h after NGF and GDNF injection. LC induced mechanical hyperalgesia neither in TRPV1−/− nor in TRPV4−/− mice. NGF injection induced mechanical hyperalgesia in WT and TRPV4−/− mice but not in TRPV1−/− mice. GDNF injection induced mechanical hyperalgesia in WT but neither in TRPV1−/− nor in TRPV4−/− mice. Expression of NGF and COX-2 mRNA was significantly increased 3 h after LC in all genotypes. However, GDNF mRNA did not increase in TRPV4−/− mice. These results suggest that TRPV1 contributes to DOMS downstream (possibly at nociceptors) of NGF and GDNF, while TRPV4 is located downstream of GDNF and possibly also in the process of GDNF up-regulation.  相似文献   

4.
Phospholipase C Mediated Modulation of TRPV1 Channels   总被引:1,自引:0,他引:1  
The transient receptor potential vanilloid type 1 (TRPV1) channels are involved in both thermosensation and nociception. They are activated by heat, protons, and capsaicin and modulated by a plethora of other agents. This review will focus on the consequences of phospholipase C (PLC) activation, with special emphasis on the effects of phosphatidylinositol 4,5-bisphosphate (PIP2) on these channels. Two opposing effects of PIP2 have been reported on TRPV1. PIP2 has been proposed to inhibit TRPV1, and relief from this inhibition was suggested to be involved in sensitization of these channels by pro-inflammatory agents. In excised patches, however, PIP2 was shown to activate TRPV1. Calcium flowing through TRPV1 activates PLC and the resulting depletion of PIP2 was proposed to play a role in capsaicin-induced desensitization of these channels. We will describe the data indicating involvement of PLC and PIP2 in sensitization and desensitization of TRPV1 and will also discuss other pathways potentially contributing to these two phenomena. We attempt to resolve the seemingly contradictory data by proposing that PIP2 can both activate and inhibit TRPV1 depending on the experimental conditions, more specifically on the level of stimulation of these channels. Finally, we also discuss data in the literature indicating that other TRP channels, TRPA1 and some members of the TRPC subfamily, may also be under a similar dual control by PIP2.  相似文献   

5.
NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels   总被引:23,自引:0,他引:23  
Nociceptors, or pain-sensitive receptors, are unique among sensory receptors in that their sensitivity is increased by noxious stimulation. This process, called sensitization or hyperalgesia, is mediated by a variety of proinflammatory factors, including bradykinin, ATP and NGF, which cause sensitization to noxious heat stimuli by enhancing the membrane current carried by the heat- and capsaicin-gated ion channel, TRPV1. Several different mechanisms for sensitization of TRPV1 have been proposed. Here we show that NGF, acting on the TrkA receptor, activates a signalling pathway in which PI3 kinase plays a crucial early role, with Src kinase as the downstream element which binds to and phosphorylates TRPV1. Phosphorylation of TRPV1 at a single tyrosine residue, Y200, followed by insertion of TRPV1 channels into the surface membrane, explains most of the rapid sensitizing actions of NGF.  相似文献   

6.
To investigate the efficacy of sacral nerve stimulation (SNS) on nerve growth factor (NGF) mediated visceral sensitivity in normal rat and visceral hypersensitivity model rats. 120 male newborn rats were randomly divided into 6 groups: group A was normal model group; group B ~ F were all sensitized with acetic acid enema and grouped again. Group c2 was given NGF antagonist, d2 group was given NGF agonist, e2 group was given PI3K inhibitor, and f2 group was given PLC‐γ inhibitor. After treatment, the expression of NGF, TrKA, PI3K, AKT, PLC‐γ, NF‐κB, TRPV1, pTRPV1 and intracellular Ca2+ content were detected. The expression of protein TRPV1 and pTRPV1 was increased, and Ca2+ was increased in the visceral hypersensitive group. NGF, TrKA in NGF antagonist group, PI3K, AKT, NF‐κB in PI3K inhibitor group, PLC‐γ in PLC‐γ inhibitor group were all almost not expressed. The relative expression of NGF, TrKA, PI3K, AKT, PLC‐γ and NF‐κB in NGF antagonist group was lower than that in visceral hypersensitivity group and NGF activator group (P < .01). The relative expression of NGF, TrKA, PI3K and AKT mRNA in NGF antagonist group was lower than that in the normal model group (P < .01). There was no significant difference in the relative expression of PLC‐γ and NF‐κB mRNA (P > .05). The expression level of MAPK, ERK1 and ERK2 in visceral hypersensitivity group was higher than that in PI3K inhibitor group and PLC‐γ inhibitor group. The normal group Ca2+ curve was flat, and the NGF agonist group had the highest Ca2+ curve peak. Calcium concentration in visceral hypersensitivity group was higher than that in PI3K inhibitor group and that in PLC‐γ inhibitor group was higher than that in NGF antagonist group. The binding of TrkA receptor to NGF activates the MAPK/ERK pathway, the PI3K/Akt pathway and the PLC‐γ pathway, causing changes in the fluidity of intracellular and extracellular Ca2+, resulting in increased sensitivity of visceral tissues and organs.  相似文献   

7.
8.
Extracellular acidification contributes to pain by activating or modulating nociceptor activity. To evaluate acidic signaling from the colon, we characterized acid-elicited currents in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglion (DRG) neurons identified by content of a fluorescent dye (DiI) previously injected into the colon wall. In 13% of unidentified LS DRG neurons (not labeled with DiI) and 69% of LS colon neurons labeled with DiI, protons activated a sustained current that was significantly and reversibly attenuated by the transient receptor potential vanilloid receptor 1 (TRPV1) antagonist capsazepine. In contrast, 63% of unidentified LS DRG neurons and 4% of LS colon neurons exhibited transient amiloride-sensitive acid-sensing ion channel (ASIC) currents. The peak current density of acid-elicited currents was significantly reduced in colon sensory neurons from TRPV1-null mice, supporting predominant expression of TRPV1 in LS colon sensory neurons, which was also confirmed immunohistochemically. Similar to LS colon DRG neurons, acid-elicited currents in TL colon DRG neurons were mediated predominantly by TRPV1. However, the pH producing half-activation of responses significantly differed between TL and LS colon DRG neurons. The properties of acid-elicited currents in colon DRG neurons suggest differential contributions of ASICs and TRPV1 to colon sensation and likely nociception. visceral pain; dorsal root ganglion neurons; acid-sensing ion channel; capsaicin receptor; acid-evoked currents; transient receptor potential vanilloid receptor 1  相似文献   

9.
10.
11.
Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In this study, we examined the effects of TRPV1 activation on cell injury pathways in this subpopulation of neurons in the streptozotocin-induced diabetic rat model. Large DRG neurons from diabetic (6–8 weeks) rats displayed increased oxidative stress and activation of cell injury markers compared with healthy controls. Capsaicin (CAP) treatment induced decreased labeling of MitoTracker Red and increased cytosolic cytochrome c and activation of caspase 3 in large neurons isolated from diabetic rats. CAP treatment also induced oxidative stress in large diabetic DRG neurons, which was blocked by pre-treatment with caspase or calpain inhibitor. In addition, both μ-calpain expression and calpain activity were significantly increased in DRG neurons from diabetic rats after CAP treatment. Treatment with capsazepine, a competitive TRPV1 antagonist, markedly reduced these abnormalities in vitro and prevented activation of cell injury in large DRG neurons in diabetic rats in vivo . These results suggest that activation of the TRPV1 receptor activates pathways associated with caspase-dependent and calpain-dependent stress in large DRG neurons in STZ-diabetic rats. Activation of the TRPV1 receptor may contribute to preferential neuronal stress in large DRG neurons relatively early in diabetic sensory neuropathy.  相似文献   

12.

Background  

Transient receptor potential (TRP) receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG) sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established.  相似文献   

13.
Bradykinin is an important mediator produced during myocardial ischemia and infarction that can activate and/or sensitize cardiac spinal (sympathetic) sensory neurons to trigger chest pain. Because a long-onset latency is associated with the bradykinin effect on cardiac spinal afferents, a cascade of intracellular signaling events is likely involved in the action of bradykinin on cardiac nociceptors. In this study, we determined the signal transduction mechanisms involved in bradykinin stimulation of cardiac nociceptors. Cardiac dorsal root ganglion (DRG) neurons in rats were labeled by intracardiac injection of a fluorescent tracer, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholate (DiI). Whole cell current-clamp recordings were performed in acutely isolated DRG neurons. In DiI-labeled DRG neurons, 1 microM bradykinin significantly increased the firing frequency and lowered the membrane potential. Iodoresiniferatoxin, a highly specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, significantly reduced the excitatory effect of bradykinin. Furthermore, the stimulating effect of bradykinin on DiI-labeled DRG neurons was significantly attenuated by baicalein (a selective inhibitor of 12-lipoxygenase) or 2-aminoethyl diphenylborinate [an inositol 1,4,5-trisphosphate (IP(3)) antagonist]. In addition, the effect of bradykinin on cardiac DRG neurons was abolished after the neurons were treated with BAPTA-AM or thapsigargin (to deplete intracellular Ca(2+) stores) but not in the Ca(2+)-free extracellular solution. Collectively, these findings provide new evidence that 12-lipoxygenase products, IP(3), and TRPV1 channels contribute importantly to excitation of cardiac nociceptors by bradykinin. Activation of TRPV1 and the increase in the intracellular Ca(2+) are critically involved in activation/sensitization of cardiac nociceptors by bradykinin.  相似文献   

14.
Stressfull life events have powerful influences on visceral perception of certain IBS patients. In the present study, we aimed to examine the involvement of TRPV1 and TRPA1 in the stress-induced visceral hyperalgesia. Rats were exposed to 1-h water avoidance stress (WAS) daily for 10 consecutive days. The abdominal withdrawal reflex (AWR) to colorectal distension was assessed at the end of the 10-day period. Western-blotting analysis was applied to investigate the alterations of TRPV1 and TRPA1 in the colonic afferent dorsal root ganglia (DRG). Compared with control rats, the WAS-treated rats demonstrated a significant increase in the AWR with the pressure ≥40 mm Hg (P < 0.05). Meanwhile, in the WAS-treated rats, western-blotting analysis showed significant upregulation of TRPV1 and TRPA1 in the colonic afferent DRG. The results indicate that WAS could induce the upregulation of TRPV1 and TRPA1 in the colonic afferent DRG, and both receptors may be candidate molecules involved in the stress-induced visceral hyperalgesia in rats.  相似文献   

15.
Target-derived NGF promotes the phenotypic maintenance of mature dorsal root ganglion (DRG) nociceptive neurons. Here, we provide in vivo and in vitro evidence for the presence within DRG neurons of endosomes containing NGF, activated TrkA, and signaling proteins of the Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways. Signaling endosomes were shown to be retrogradely transported in the isolated sciatic nerve in vitro. NGF injection in the peripheral target of DRG neurons increased the retrograde transport of p-Erk1/2, p-p38, and pAkt in these membranes. Conversely, NGF antibody injections decreased the retrograde transport of p-Erk1/2 and p-p38. Our results are evidence that signaling endosomes, with the characteristics of early endosomes, convey NGF signals from the target of nociceptive neurons to their cell bodies.  相似文献   

16.
17.
Transient receptor potential vanilloid type 1 (TRPV1) is a plasma membrane Ca2+ channel involved in transduction of painful stimuli. Dorsal root ganglion (DRG) neurons express ectopic but functional TRPV1 channels in the endoplasmic reticulum (ER) (TRPV1ER). We have studied the properties of TRPV1ER in DRG neurons and HEK293T cells expressing TRPV1. Activation of TRPV1ER with capsaicin or other vanilloids produced an increase of cytosolic Ca2+ due to Ca2+ release from the ER. The decrease of [Ca2+]ER was directly revealed by an ER-targeted aequorin Ca2+ probe, expressed in DRG neurons using a herpes amplicon virus. The sensitivity of TRPV1ER to capsaicin was smaller than the sensitivity of the plasma membrane TRPV1 channels. The low affinity of TRPV1ER was not related to protein kinase A- or C-mediated phosphorylations, but it was due to inactivation by cytosolic Ca2+ because the sensitivity to capsaicin was increased by loading the cells with the Ca2+ chelator BAPTA. Decreasing [Ca2+]ER did not affect the sensitivity of TRPV1ER to capsaicin. Disruption of the TRPV1 calmodulin-binding domains at either the C terminus (Δ35AA) or the N terminus (K155A) increased 10-fold the affinity of TRPV1ER for capsaicin, suggesting that calmodulin is involved in the inactivation. The lack of TRPV1 sensitizers, such as phosphatylinositol 4,5-bisphosphate, in the ER could contribute to decrease the affinity for capsaicin. The low sensitivity of TRPV1ER to agonists may be critical for neuron health, because otherwise Ca2+ depletion of ER could lead to ER stress, unfolding protein response, and cell death.  相似文献   

18.
Vanilloid agonists such as capsaicin activate ion flux through the TRPV1 channel, a heat- and ligand-gated cation channel that transduces painful chemical or thermal stimuli applied to peripheral nerve endings in skin or deep tissues. We have probed the SAR of a variety of 1,4-dihydropyridine (DHP) derivatives as novel 'enhancers' of TRPV1 activity by examining changes in capsaicin-induced elevations in (45)Ca(2+)-uptake in either cells ectopically expressing TRPV1 or in cultured dorsal root ganglion (DRG) neurons. The enhancers increased the maximal capsaicin effect on (45)Ca(2+)-uptake by typically 2- to 3-fold without producing an action when used alone. The DHP enhancers contained 6-aryl substitution and small alkyl groups at the 1 and 4 positions, and a 3-phenylalkylthioester was tolerated. Levels of free intracellular Ca(2+), as measured by calcium imaging, were also increased in DRG neurons when exposed to the combination of capsaicin and the most efficacious enhancer 23 compared to capsaicin alone. Thus, DHPs can modulate TRPV1 channels in a positive fashion.  相似文献   

19.
Although a large number of ion channels are now believed to be regulated by phosphoinositides, particularly phosphoinositide 4,5-bisphosphate (PIP2), the mechanisms involved in phosphoinositide regulation are unclear. For the TRP superfamily of ion channels, the role and mechanism of PIP2 modulation has been especially difficult to resolve. Outstanding questions include: is PIP2 the endogenous regulatory lipid; does PIP2 potentiate all TRPs or are some TRPs inhibited by PIP2; where does PIP2 interact with TRP channels; and is the mechanism of modulation conserved among disparate subfamilies? We first addressed whether the PIP2 sensor resides within the primary sequence of the channel itself, or, as recently proposed, within an accessory integral membrane protein called Pirt. Here we show that Pirt does not alter the phosphoinositide sensitivity of TRPV1 in HEK-293 cells, that there is no FRET between TRPV1 and Pirt, and that dissociated dorsal root ganglion neurons from Pirt knock-out mice have an apparent affinity for PIP2 indistinguishable from that of their wild-type littermates. We followed by focusing on the role of the C terminus of TRPV1 in sensing PIP2. Here, we show that the distal C-terminal region is not required for PIP2 regulation, as PIP2 activation remains intact in channels in which the distal C-terminal has been truncated. Furthermore, we used a novel in vitro binding assay to demonstrate that the proximal C-terminal region of TRPV1 is sufficient for PIP2 binding. Together, our data suggest that the proximal C-terminal region of TRPV1 can interact directly with PIP2 and may play a key role in PIP2 regulation of the channel.  相似文献   

20.
Escherichia coli, the most common Gram-negative bacterium that causes meningitis in neonates, invades human brain microvascular endothelial cells (HBMEC) by rearranging host cell actin via the activation of phosphatidylinositol 3-kinase (PI3K) and PKC-alpha. Here, further, we show that phospholipase (PLC)-gamma1 is phosphorylated on tyrosine 783 and condenses at the HBMEC membrane beneath the E. coli entry site. Overexpression of a dominant negative (DN) form of PLC-gamma, the PLC-z fragment, in HBMEC inhibits PLC-gamma1 activation and significantly blocks E. coli invasion. PI3K activation is not affected in PLC-z/HBMEC upon infection, whereas PKC-alpha phosphorylation is completely abolished, indicating that PLC-gamma1 is downstream of PI3K. Concomitantly, the phosphorylation of PLC-gamma1 is blocked in HBMEC overexpressing a dominant negative form of the p85 subunit of PI3K but not in HBMEC overexpressing a dominant negative form of PKC-alpha. In addition, the recruitment of PLC-gamma1 to the cell membrane in both PLC-z/HBMEC and DN-p85/HBMEC is inhibited. Activation of PI3K is associated with the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 1,4,5-trisphosphate (PIP3), which in turn recruits PLC-gamma1 to the cell membrane via its interaction with pleckstrin homology domain of PLC-gamma1. Utilizing the pleckstrin homology domains of PKC-delta and Btk proteins fused to green fluorescent protein (GFP), which specifically interact with PIP2 and PIP3, respectively, we show herein that E. coli invasion induces the breakdown of PIP2 at the plasma membrane near the site of E. coli interaction. PIP3, on the other hand, recruits the GFPBkt to the cell membrane beneath the sites of E. coli attachment. Our studies further show that E. coli invasion induces the release of Ca2+ from intracellular pools as well as the influx of Ca2+ from the extracellular medium. This elevation in Ca2+ levels is completely blocked both in PLC-z/HBMEC and DN-p85/HBMEC, but not in DN-PKC/HBMEC. Taken together, these results suggest that E. coli infection of HBMEC induces PLC-gamma1 activation in a PI3K-dependent manner to increase Ca2+ levels in HBMEC. This is the first report demonstrating the recruitment of activated PLC-gamma1 to the sites of bacterial entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号