首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation.  相似文献   

3.
We aimed to identify key genes and pathways associated with different immune statuses of hepatitis B virus (HBV) infection. The gene expression and DNA methylation profiles were analysed in different immune statuses of HBV infection. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified, followed by their functional and integrative analyses. The differential expression of IgG Fc receptors (FcγRs) in chronic HBV‐infected patients and immune cells during different stages of HBV infection was investigated. Toll‐like receptor (TLR) signalling pathway (including TLR6) and leucocyte transendothelial migration pathway (including integrin subunit beta 1) were enriched during acute infection. Key DEGs, such as FcγR Ib and FcγR Ia, and interferon‐alpha inducible protein 27 showed correlation with alanine aminotransferase levels, and they were differentially expressed between acute and immune‐tolerant phases and between immune‐tolerant and immune‐clearance phases. The integrative analysis of DNA methylation profile showed that lowly methylated and highly expressed genes, including cytotoxic T lymphocyte‐associated protein 4 and mitogen‐activated protein kinase 3 were enriched in T cell receptor signalling pathway during acute infection. Highly methylated and lowly expressed genes, such as Ras association domain family member 1 and cyclin‐dependent kinase inhibitor 2A were identified in chronic infection. Furthermore, differentially expressed FcγR Ia, FcγR IIa and FcγR IIb, CD3?CD56+CD16+ natural killer cells and CD14highCD16+ monocytes were identified between immune‐tolerant and immune‐clearance phases by experimental validation. The above genes and pathways may be used to distinguish different immune statuses of HBV infection.  相似文献   

4.
Inpp5b is an ubiquitously expressed type II inositol polyphosphate 5-phosphatase. We have disrupted the Inpp5b gene in mice and found that homozygous mutant males are infertile. Here we examine the causes for the infertility in detail. We demonstrate that sperm from Inpp5b−/− males have reduced motility and reduced ability to fertilize eggs, although capacitation and acrosome exocytosis appear to be normal. In addition, fertilin β, a sperm surface protein involved in sperm-egg membrane interactions that is normally proteolytically processed during sperm transit through the epididymis, showed reduced levels of processing in the Inpp5b−/− animals. Inpp5b was expressed in the Sertoli cells and epididymis and at low levels in the developing germ cells; however, mice lacking Inpp5b in spermatids and not in other cell types generated by conditional gene targeting, were fully fertile. The abnormalities in mutant sperm function and maturation appear to arise from defects in the functioning of Sertoli and epididymal epithelial cells. Our results directly demonstrate a previously unknown role for phosphoinositides in normal sperm maturation beyond their previously characterized involvement in the acrosome reaction. Inpp5b−/− mice provide an excellent model to study the role of Sertoli and epididymal epithelial cells in the differentiation and maturation of sperm.  相似文献   

5.
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI‐FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)‐mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error‐free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error‐free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI‐deficient cells are exquisitely sensitive to ICL‐inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR‐mediated ICL repair is defective, and breaks are instead re‐ligated by polymerase θ‐dependent microhomology‐mediated end‐joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error‐free ICL repair.  相似文献   

6.
We have deduced equations to quantify the entropy associated to the compartmentalization of components in eukaryotic cells as a function of cell and compartment volumes, and of the concentration of solutes. On the basis of known and plausible values of volume and solute concentrations and the deduced equations, we estimate that the contribution of compartmentalization to the decrease of entropy is approximately −14.4 × 10−14 J K−1 cell−1 (−0.7 J K−1 L−1) in the case of Saccharomyces cerevisiae, a typical eukaryotic cell, and approximately −49.6 × 10−14 J K−1 cell−1 (−1.0 J K−1 L−1) in the more complex Chlamydomonas reinhardtii. When compared with other potential contributing factors, such as the informational entropy of DNA and the conformational entropy of proteins, compartmentalization appears as an essential development that significantly decreased the entropy of living cells during biological evolution.  相似文献   

7.
Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spα/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized lipids. AIM protein is induced in response to oxLDL loading and is highly expressed in foam cells within atherosclerotic lesions. Interestingly, both expression of AIM in lesions and its induction by oxidized lipids require the action of LXR/RXR heterodimers. AIM−/− macrophages are highly susceptible to oxLDL-induced apoptosis in vitro and undergo accelerated apoptosis in atherosclerotic lesions in vivo. Moreover, early atherosclerotic lesions in AIM−/−LDLR−/− double knockout mice are dramatically reduced when compared to AIM+/+LDLR−/− controls. We conclude that AIM production facilitates macrophage survival within atherosclerotic lesions and that loss of AIM decreases early lesion development by increasing macrophage apoptosis.  相似文献   

8.
Our recently published work suggests that DNA helicases such as the Werner syndrome helicase (WRN) represent a novel class of proteins to target for anticancer therapy. Specifically, pharmacological inhibition of WRN helicase activity in human cells defective in the Fanconi anemia (FA) pathway of interstrand cross-link (ICL) repair are sensitized to the DNA cross-linking agent and chemotherapy drug mitomycin C (MMC) by the WRN helicase inhibitor NSC 617145.1 The mechanistic basis for the synergistic interaction between NSC 617145 and MMC is discussed in this paper and extrapolated to potential implications for genetic or chemically induced synthetic lethality provoked by cellular exposure to the WRN helicase inhibitor under the context of relevant DNA repair deficiencies associated with cancers or induced by small-molecule inhibitors. Experimental data are presented showing that small-molecule inhibition of WRN helicase elevates sensitivity to MMC-induced stress in human cells that are deficient in both FANCD2 and DNA protein kinase catalytic subunit (DNA-PKcs). These findings suggest a model in which drug-mediated inhibition of WRN helicase activity exacerbates the deleterious effects of MMC-induced DNA damage when both the FA and NHEJ pathways are defective. We conclude with a perspective for the FA pathway and synthetic lethality and implications for DNA repair helicase inhibitors that can be developed for anticancer strategies.  相似文献   

9.
10.
11.
Factor Xa is a serine protease, whose high selectivity can be used to cleave protein tags from recombinant proteins. A fusion protein comprised of a self-activating form of factor X linked to a cellulose-binding module, saCBMFX, was produced in a stable transformed Sf9 insect cell line. The activity of the insect cell produced saCBMFX was higher than the equivalent mammalian cell produced material. A 1.5 l batch fermentation reached a maximum cell concentration of 1.6 × 107 cells ml−1 and a final saCBMFX concentration of 4 mg l−1. The production of saCBMFX by this cell line was also analyzed in a 1.5 l perfusion system using an ultrasonic filter as a cell-retention device for flow rates up to 3.5 l day−1. The cell-retention efficiency of an air backflush mode of acoustic filter operation was greater than 95% and eliminated the need to pump the relatively shear sensitive insect cells. In the perfusion system over 4 × 107 Sf9 cells ml−1 were obtained with a viability greater than 80%. With a doubling of viable cell concentration from 1.5 to 3 × 107 cells ml−1 the saCBMFX production rate was doubled to 6 mg l−1 day−1. The saCBMFX volumetric productivity of the perfusion system was higher than the batch fermentations (0.6 mg l−1 day−1) by an order of magnitude.  相似文献   

12.
The number of biomaterials used in biomedical applications has rapidly increased in the past two decades. Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard-tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetically prepared composite that in its structure contains the same molecular concentration of OH groups and F ions. The aim of this experimental investigation was to evaluate cytotoxic, genotoxic and mutagenic effects of FHA and FA eluates on Chinese hamster V79 cells and to compare them with the effects of hydroxyapatite (HA) eluate. Cytotoxicity of the biomaterials tested was evaluated by use of the cell colony-formation assay and by direct counting of the cells in each colony. Genotoxicity was assessed by single-cell gel electrophoresis (comet assay) and mutagenicity was evaluated by the Hprt gene-mutation assay and in bacterial mutagenicity tests using Salmonella typhimurium TA100. The results show that the highest test concentrations of the biomaterials (100% and 75% eluates) induced very weak inhibition of colony growth (about 10%). On the other hand, the reduction of cell number per colony induced by these concentrations was in the range from 43% to 31%. The comet assay showed that biomaterials induced DNA breaks, which increased with increasing test concentrations in the order HA < FHA < FA. None of the biomaterials induced mutagenic effects compared with the positive control (N-methyl-N′-nitro-N-nitrosoguanidine), and DNA breakage was probably the reason for the inhibition of cell division in V79 cell colonies.  相似文献   

13.
The “in vitro” effects of α-tocopherol, butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA) were studied on aggregation of human platelets induced by collagen and arachidonic acid (AA), on the metabolic conversion of 14C AA through the cyclooxygenase and lipoxygenase pathways and on the formation of thromboxane B2 (TXB2) in washed platelets after stimulation with collagen.Vitamin E completely inhibited AA induced platelet aggregation only at high concentration (mM) and after 10 minutes of preincubation, with limited effects on AA metabolism in platelets and no effect on TXB2 formation from endogenous substrate. BHA completely inhibited platelet aggregation in the 10−6M range, gave 50% inhibition of AA metabolism in the 10−5M range and almost complete inhibition of thromboxane formation in the 10−4M range. BHT was about 100 times less active on platelet aggregation and AA metabolism. The lipoxygenase and cyclooxygenase pathways were differentially affected at low concentrations of BHA and only at concentrations greater than 5×10−5M were both pathways depressed.  相似文献   

14.
Crosslink repair of mitomycin C-induced interstrand crosslinks was studied in exponentially growing and confluent normal human, transformed WI38CT-1, Fanconi's anemia (FA) and xeroderma pigmentosum (XP) group-A fibroblasts by the assay methods of alkaline sucrose centrifugation, hydroxyapatite column chromatography and S1-nuclease digestion. These three methods demonstrated unequivocally that crosslinking occurred at a rate of 0.13 crosslinks/108 Da per μg per ml mitomycin C ( 10 μg/ml) and the first half-excision of crosslinks followed the rapid first-order kinetics of 2–3 h half-life in exponentially-growing normal, WI38CT-1 and XP group-A cells. However, the first half-excision was completely defective in three out of the four FA strains tested and severely retarded in an FA strain. These results strongly support our previous observations in different strains of normal human, FA and XP group-A cells. An important new addition is that confluent, otherwise proficient, normal and XP cells almost completely lost the ability of the first, rapid half-excision of mitomycin C crosslinks in their DNA. This probably suggests that the enzyme or regulatory factor responsible for the half-excision, which differs from that for nucleotide excision repair, present constitutively in confluent cells, may be induced or activated only in the cycling cells. However, its relation to a defective FA factor is not clear at present.  相似文献   

15.
The effect of zinc-chelating dipeptides on osteoblastic MC3T3-E1 cells was investigated. As zinc compounds, we used zinc sulfate, AHZ, di(N-acetyl-β-alanyl-l-histidinato)zinc (AAHZ), and di(histidino)zinc (HZ). Cells were cultured for 72 h in the presence of zinc compounds (10−8–10−5M). The effect of AHZ (10−7 and 10−6M) to increase protein and deoxyribonucleic acid (DNA) contents in the cells was the greatest in comparison with those of other zinc compounds. Zinc sulfate and HZ at 10−7M did not have an effect on the cellular protein content. AHZ (10−6M) had a potent effect on cell proliferation, although zinc sulfate (10−6M) had no effect. β-Alanyl-l-histidine (10−6 and 10−5M) did not have an appreciable effect on the cells. Those effects of AHZ (10−6M) on osteoblastic cells were completely abolished by the presence of cycloheximide (10−6M). AHZ (10−8–10−5M) directly activated [3H]leucyl-tRNA synthetase in the cell homogenate, whereas the effect of zinc sulfate was seen at 10−6 and 10−5M. The present study suggests that the chemical form of zinc-chelating β-alanyl-l-histidine (AHZ) can reveal a potent anabolic effect on osteoblastic cells, and that AHZ directly stimulates protein synthesis.  相似文献   

16.
N-WASP (Neural Wiskott Aldrich Syndrome Protein) regulates actin polymerization by activating the Arp2/3 complex and promotes the formation of actin-rich structures such as filopodia. Such actin-rich structures play critical roles in cell adhesion and cell motility. Analysis of the adhesion properties of N-WASP+/+ and N-WASP−/− mouse embryonic fibroblasts to extracellular matrix proteins revealed that N-WASP is critical for cell adhesion to fibronectin. There was no significant difference in the localization of paxillin in the two cell lines, however the vinculin patches in WASP+/+ cells were thicker and more prominent than those in N-WASP−/− cells. The β1 integrins in N-WASP+/+ cells were found in large clusters, while β1 integrins were more dispersed in N-WASP−/− cells. The N-WASP−/− cells migrated more rapidly than N-WASP+/+ cells in a scratch migration assay. Thus, our data suggest that N-WASP deficiency leads to reduced adhesion to fibronectin and increased cell motility.  相似文献   

17.
Developmentally regulated G-proteins (DRGs) are a highly conserved family of GTP-binding proteins found in archaea, plants, fungi and animals, indicating important roles in fundamental pathways. Their function is poorly understood, but they have been implicated in cell division, proliferation, and growth, as well as several medical conditions. Individual subfamilies within the G-protein superfamily possess unique nucleotide binding and hydrolysis rates that are intrinsic to their cellular function, and so characterization of these rates for a particular G-protein may provide insight into its cellular activity. We have produced recombinant active DRG protein using a bacterial expression system and refolding, and performed biochemical characterization of their GTP binding and hydrolysis. We show that recombinant Arabidopsis thaliana atDRG1 and atDRG2a are able to bind GDP and GTP. We also show that DRGs can hydrolyze GTP in vitro without the assistance of GTPase-activating proteins and guanine exchange factors. The atDRG proteins hydrolyze GTP at a relatively slow rate (0.94 × 10−3 min−1 for DRG1 and 1.36 × 10−3 min−1 for DRG2) that is consistent with their nearest characterized relatives, the Obg subfamily. The ability of DRGs to bind nucleotide substrates without assistance, their slow rate of GTP hydrolysis, heat stress activation and domain conservation suggest a possible role as a chaperone in ribosome assembly in response to stress as it has been suggested for the Obg proteins, a different but related G-protein subfamily.  相似文献   

18.
Cattle hypocuprosis is a well-known endemic disease in several parts of the world. In a previous paper, the clastogenic effect of copper deficiency in cattle has been described although the occurrence of DNA damage was not directly tested. For this reason, the relation between DNA damage assessed by the Comet assay and Cu plasma concentration was studied in Aberdeen Angus cattle.Blood samples were obtained in heparinized Vacutainer® tubes from 28 female Aberdeen Angus cows during pregnancy or immediately after to give birth. Each sample was divided into two aliquots for Comet assay and Cu plasma determination, respectively. From the 28 cattle sampled, 17 were normocupremic and 11 were hypocupremic.Results obtained showed that whereas the average plasma Cu level in normocupremic cattle was 67.6 μg/dl, in hypocupremic cattle it was 32.1 μg/dl. The increase of DNA damage was mostly evidenced by the decrease of comet degree 1 cells and an increase of comet degree 2 cells. Correlation analysis comparing plasma Cu levels and degree 1 cells showed a correlation coefficient 0.72 (P<0.01). The comparison between plasma Cu levels and comet degree 2 cells was −0.65 (P<0.01). The comparison between plasma Cu levels and the comet length-head diameter medians determined in 23 out of 28 animals showed a correlation coefficient of −0.54 (P<0.01).The induction of DNA damage was clearly supported by the fact that the decrease of plasma Cu levels was correlated with the increase of comet length-head diameter. These findings could be considered as a contribution to the hypothesis that DNA and chromosome damage are a consequence of the higher oxidative stress suffered by hypocupremic animals.  相似文献   

19.
Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.  相似文献   

20.
FANCD2 is required for the repair of DNA damage by the FA (Fanconi anemia) pathway, and, consequently, FANCD2-deficient cells are sensitive to compounds such as cisplatin and formaldehyde that induce DNA:DNA and DNA:protein crosslinks, respectively. The DNA2 helicase/nuclease is required for RNA/DNA flap removal from Okazaki fragments during DNA replication and for the resection of DSBs (double-strand breaks) during HDR (homology-directed repair) of replication stress-induced damage. A knockdown of DNA2 renders normal cells as sensitive to cisplatin (in the absence of EXO1) and to formaldehyde (even in the presence of EXO1) as FANCD2−/− cells. Surprisingly, however, the depletion of DNA2 in FANCD2-deficient cells rescues the sensitivity of FANCD2−/− cells to cisplatin and formaldehyde. We previously showed that the resection activity of DNA2 acts downstream of FANCD2 to insure HDR of the DSBs arising when replication forks encounter ICL (interstrand crosslink) damage. The suppression of FANCD2−/− by DNA2 knockdowns suggests that DNA2 and FANCD2 also have antagonistic roles: in the absence of FANCD2, DNA2 somehow corrupts repair. To demonstrate that DNA2 is deleterious to crosslink repair, we used psoralen-induced ICL damage to trigger the repair of a site-specific crosslink in a GFP reporter and observed that “over-resection” can account for reduced repair. Our work demonstrates that excessive resection can lead to genome instability and shows that strict regulatory processes have evolved to inhibit resection nucleases. The suppression of FANCD2−/− phenotypes by DNA2 depletion may have implications for FA therapies and for the use of ICL-inducing agents in chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号