首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primuline fluorochrome retrograde transport technique was used to investigate sources of thalamocortical projections to a single rat somatosensory cortex column connected with the projection of the C3 vibrissa. Labeled cells were identified in eight different thalamic nuclei: two specific, five nonspecific, and one association nucleus. Labeled neurons differed in the degree of stain accumulated as well as cell numbers and density of distribution from one nucleus to another, indicative of the different arborization patterns of their axons within the cortex. Highest numbers of heavily stained cells as well as highest density of distribution were observed in the ventral thalamic nucleus. The convergence seen between different thalamocortical inputs on to a single somatosensory cortex column explains the functional differences observed between neurons belonging to the same column and makes the formation of functionally distinct neuronal groupings appear possible on this structural basis.Neurocybernetics Research Institute, Rostov-on-Don. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 168–174, March–April, 1989.  相似文献   

2.
Thalamic afferent inputs of the motor cortex (area 4) were studied in cats by retrograde axonal transport of horseradish peroxidase (HRP). The main concentration of HRP-labeled neurons was found in rostral zones of the relay nuclei (of the ventrolateral and ventrobasal complex). A few labeled neurons were found in the mediodorsal association nucleus, where their distribution is quite local. HRP-labeled neurons of nonspecific intralaminar nuclei, projecting into the motor cortex, are present only in single numbers and show no tendency toward grouping in any parts of these nuclei. The results are evidence that the motor cortex receives heterogeneous afferentation from various thalamic nuclei, and it is evidently this which guarantees the reliability of transmission of incoming information.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 250–255, March–April, 1985.  相似文献   

3.
The morphology and localization of neurons of the thalamic ventrobasal complex projecting to the primary somatosensory cortex were studied in cats by the retrograde axonal transport of exogenous horseradish peroxidase method. Different types of neurons were detected: triangular, round with symmetrical processes, oval with processes diverging asymmetrically, and fusiform. Tagged neurons were distributed as two large populations in the central region of the complex adjoining the boundaries of the two nuclei. Comparison with the somatotopic map showed that the tagged neurons were concentrated mainly in the projection area of the forelimb and head. Since microinjections of peroxidase into the somatosensory cortex also were given in the projection areas for the forelimb and head, the results confirm the neurophysiological concept of strict somatotopic organization of thalamocortical input.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. A. A. Ukhtomskii Physiological Institute, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 125–129, March–April, 1979.  相似文献   

4.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

5.
Retrogradely labeled thalamic neurons—the sources of afferents in the focus of peak activity induced by radial nerve stimulation—were investigated in adult cats by means of microiontophoretic horseradish peroxidase injection into the first somatosensory zone of the cerebral cortex. Labeled cells were found mainly in the ventroposterolateral and a smaller proportion in the posteroventral medial thalamic nuclei. Labeled neurons were distributed in groups differing in their morphological parameters within these nuclei.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 154–160, March–April, 1988.  相似文献   

6.
In acute experiments on cats evoked potentials (EP) of the orbital cortex were recorded and the electrogenesis and functional purpose of individual components of associative responses (AR) were investigated. It was concluded that the initial negative fluctuation of the AR arises as a consequence of the physical propagation of potentials from the projection somatosensory cortex and the second, positive, component and the following negative component are the result of arrival of an afferent volley into the orbital cortex via specific thalamic nuclei. These two components are due to activation of neurons of the orbital cortex. The afterdischarge, which appears sometimes, develops under the effect of impulses arriving from nonspecific thalamic nuclei. It is shown that during the second, positive, phase of the AR, primarily afferent neurons are activated, and during the negative phase, efferent neurons of the orbital cortex. The afterdischarge, which complicates the negative phase of the AR, is due to inhibition of afferent neurons.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 384–390, July–August, 1970.  相似文献   

7.
Investigation of unit activity of the cat somatosensory cortex has shown that the principal role in the genesis of the primary response, the response to stimulation of the thalamic relay nucleus, the callosal response, and certain other forms of evoked potentials (EPs) of the somatosensory cortex is played by neurons not usually responding by spike generation during EP development. The EPs reflect what the cortical neurons received from the afferent volley, and the level of their polarization, but they are not a reliable indicator of fast nervous processes in the cerebral cortex. The EPs reflect postsynaptic potentials (PSPs) of neurons not directly participating actively in the analysis of information reaching the cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No, 4, pp. 360–367, July–August, 1970.  相似文献   

8.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

9.
Unit responses in the primary somatosensory projection cortex to stimulation of the ventro-posterolateral thalamic nucleus were investigated by extra- and intracellular recording in chronic experiments on cats. Short-latency spike responses of 71.3% of recorded neurons appeared after not more than 4 msec. It is concluded that activation of neurons in this area of the cortex is chiefly monosynaptic and disynaptic. Besides participating in the initial response to the stimulus, one-quarter of the neurons generated after-discharges 120–314 msec later. These after-discharges are based on rebound after IPSPs and additional synaptic activation. Initial inhibition may appear 1.5 msec after stimulation of the ventro-posterolateral nucleus, evidence against the participation of recurrent collaterals in the formation of these IPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 348–354, July–August, 1973.  相似文献   

10.
It was shown by the method of retrograde axonal transport of horseradish peroxidase that the posterolateral thalamic nucleus (NPL) in rats receives considerable ascending projections from the superior colliculus (SC), the dorsal part of the lateral geniculate body (LGB), and the pretectal region (PT) and smaller projections from n. ventralis posterior (VP) and n. ventralis lateralis (VL) of the thalamus, the ventral part of LGB, the zona incerta, and anterior hypothalamus. The most marked descending projections run into NPL from area 18A of the cortex and the dentate fascia of the hippocampus, whereas inputs from cortical areas 18, 20, 7, 29c, 17, and 36 are less marked. In electrophysiological experiments with peripheral stimulation of visual, auditory, and somatosensory systems, polysensory convergence and interaction between signals from these systems were studied during isolated and simultaneous presentation of heterosensory stimuli. Of 229 neurons tested, 134 (58.5%) responded to at least one of the stimuli mentioned. Among monomodal neurons (53 of 134) there were some cells which responded to visual (77.4%) and somatic (22.6%) stimulation; neurons which responded only to acoustic stimulation were not found in the nucleus. As far as polymodal neurons (81 of 134) responding to two or three sensory stimuli are concerned, the most effective inputs of these units were visual and somatosensory. Interaction between stimuli acting on polymodal neurons was expressed as mutual inhibition or facilitation of responses; opposite effects could be observed on the various components of these responses.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 168–176, March–April, 1984.  相似文献   

11.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

12.
It was shown that the rabbit sensorimotor cortex received afferent fibers from neurons located in the specific, nonspecific, and association thalamic nuclei using the retrograde axonal transport technique. The distribution, dimensions, and shape of the somata of relay neurons spread through the thalamic nuclei were analyzed. The total number of neurons sending out thalamo-sensorimotor-cortical fibers was calculated and the coordinates of loci with the highest density of these cells in each thalamic nucleus were identified. Multipolar and stellate cells with somata measuring 12–20 µm and 10–15 µm in diameter, respectively, prevailed amongst relay neurons. Amongst the specific nuclei, the majority of afferent fibers are sent out by the ventrolateral, ventral anterior, and anterior ventral nuclei. A comparable number of afferent fibers are sent out by the mediodorsal and paracentral nuclei; these split up among the association nuclei and paracentral nuclei, respectively. It is suggested that afferents from many different groups of thalamic nuclei are essential for the sensorimotor cortex to participate in thalamocortical interaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 87–94, January–February, 1987.  相似文献   

13.
The retrograde horseradish peroxidase (HRP) transport method was used to study the location and morphology of neuron groups in the ventrobasal complex of the thalamus projecting to the region of vibrissal representation in the somatosensory cortex in rats. Injection of HRP into a circumscribed region of the somatosensory cortex revealed the following pattern of organization of the thalamocortical relay groups of neurons. Labeled neurons were located in the ventroposterolateral nucleus of the ventrobasal complex and were associated in groups 100–120 µ in diameter. Staining of several groups, even after minimal injections of HRP, and an increase in the number of labeled cells in each group with an increase in the zone of injection of HRP in the cortex suggest the presence of both convergence and divergence of specific thalamocortical pathways. The different shapes of the relay neurons and differences in the degree of HRP accumulation by them may indicate differences in their functional role in thalamocortical integration.Research Institute of Neurocybernetics, Rostov State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 631–635, November–December, 1982.  相似文献   

14.
Responses of 189 neurons of the somatosensory cortex to stimulation of the nonspecific reticular (R) and anteroventral (AV) nuclei of the thalamus were studied in cats anesthetized with thiopental and immobilized with tubocurarine. In the series of experiments with stimulation of R and, for comparison, of the specific ventral posterolateral nucleus (VPL), 132 neurons were recorded, of which 22 (16.7%) did not respond to stimulation of these nuclei, 77 (58.3%) responded only to stimulation of VPL, and 33 (25%) responded to stimulation of both VPL and R. In the series of experiments in which AV was stimulated, 57 neurons were recorded. Eight (14.8%) responded to neither stimulus and 25 (43.1%) responded only to stimulation of VPL; 24 responded to stimulation of AV (42.1%), and of these, 10 also responded to stimulation of VPL. A characteristic feature of unit responses in the somatosensory cortex to stimulation of the nonspecific nuclei was the irregularity of the responses and their longer latent period. Only five cells responded sooner to stimulation of the nonspecific nuclei than to stimulation of VPL. Responses of the nonspecific nuclei to stimulation appeared clearly only if the stimulation was repetitive. Preliminary stimulation of R blocks the response to stimulation of VPL during the subsequent 40–60 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 384–390, July–August, 1972.  相似文献   

15.
Connections of the somatosensory cortex surrounding the postcruciate fossa with the lateral region of the motor area (in the cruciate sulcus) were established by the Nauta-Gygax and Fink-Heimer methods and also by the retrograde horse-radish peroxidase transport method. A high degree of differentiation was found in the organization of transcortical sensomotor projections. The pyramidal, stellate, and inverted pyramidal neurons in the third layer of the cortex were shown to take part in the formation of these pathways. Results obtained by the experimental degeneration method combined with electron microscopy showed that afferentation from the first somatosensory area of the cortex reaches mainly cells in layers III and V. It is suggested that the influence of the association fibers on projection neurons in the motor area is transmitted either directly or through interneurons.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 460–466, September–October, 1981.  相似文献   

16.
Although a highly organized system of reciprocal projections exists between the cerebral cortex and the thalamus, the relationship of the thalamocortical projections to functional activity remains unclear. This study attempts to identify the correlation between thalamic relay cells and functional activity evoked in the ventroposterior nucleus (VP) of cynomolgus and squirrel monkeys. Wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) was iontophoretically injected into physiologically determined sites in the somatosensory cortex, resulting in retrogradely labeled cells and anterogradely labeled terminals in corresponding somatosensory thalamic regions. In the same animals, 2-deoxyglucose (2DG) experiments were carried out 2 days later, using the somatic stimuli identified as best exciting the cortical neurons. Stimulation to the limbs produced crescent-shaped clusters of metabolic label arranged in a somatotopically organized fashion in the ventral posterior lateral nucleus (VPL). Following WGA:HRP injections into area 3b, the stimulus-evoked 2DG label was colocalized with the retrograde and anterograde tracer. This finding suggests that the location of stimulus-evoked metabolic activity can be predicted by the presence of transported WGA:HRP clusters.  相似文献   

17.
Evoked potentials arising in the motor cortex in response to its direct stimulation (dendritic and slow negative potentials), to stimulation of the ventrolateral (primary response) and intralaminar (nonspecific response) thalamic nuclei, and to stimulation of the pyramidal tracts (antidromic response), and also postsynaptic responses of neurons corresponding to them were studied in acute experiments on curarized cats. Evoked potentials arising in response to direct cortical stimulation and also to stimulation of the specific and nonspecific thalamic nuclei and pyramidal tracts were recorded from the same point of the motor cortex, and the corresponding intracellular responses were recorded from the same neuron. Slow negative potentials arising under these conditions of stimulation and the IPSPs corresponding to them were shown to have an identical time course. The results show that slow negative potentials are a reflection of hyperpolarization of pyramidal neurons. It is suggested that the individual components of responses evoked by direct stimulation of the cortex and thalamic nuclei have a common genesis.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 115–121, March–April, 1982.  相似文献   

18.
Interneuronal connections of area 7 of the cat parietal cortex with projection areas of the visual, auditory, and somatosensory cortex were analyzed by orthograde degeneration and retrograde transport of horseradish peroxidase methods. By combined investigation the cortico-cortical sources of afferentation of parietal area 7 could be precisely identified and concentration sites of neurons sending their axons into this area identified, and the morphological characteristics of these neurons could also be determined.A. A. Ukhtomskii Physiological Institute, A. A. Zhdanov Leningrad State University. Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 13–17, January–February, 1980.  相似文献   

19.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

20.
Fibrillar degeneration after extirpation of the frontal cortical field F2, central part, was observed in dogs by Nauta--Gygax and Fink--Heimer's methods. Degenerated fibrillae were stated to form two bundles and terminate near the neurons of nonspecific thalamic nuclei: n. ret, MD, pf, sprf, as well as in the neurons of specific thalamic nuclei: n. Vna, cgl, cgm, pul. Degenerated processes of the frontal cortex cells projected to the neurons of basal nuclei: the head of nucleus caudatus, putamen, globus pallidus. In the claustrum degenerative changes were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号