首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Many cytokines (including IL-1, IL-2, IL-4, IL-6, and TNF-alpha) have been shown to induce thymocyte proliferation in the presence of PHA. In this report, we demonstrate that certain cytokine combinations induce thymocyte proliferation in the absence of artificial comitogens. IL-1 alpha, IL-6, and TNF-alpha enhanced the proliferation of whole unseparated thymocytes in the presence of IL-2, whereas none of them induced thymocyte proliferation alone. In contrast, of these three enhancing cytokines, only IL-6 enhanced IL-4-induced proliferation. We also separated thymocytes into four groups based on their expression of CD4 and CD8, and investigated their responses to various cytokines. The results indicate that each cytokine combination affects different thymocyte subsets; thus, IL-1 alpha enhanced the proliferation of CD4-CD8- double negative (DN) thymocytes more efficiently than IL-6 in the presence of IL-2, whereas IL-6 enhanced the responses of CD4+CD8- and CD4-CD8+ single positive (SP) thymocytes to IL-2 or IL-4 better than IL-1 alpha. TNF-alpha enhanced the proliferation of both DN and both SP subsets in the presence of IL-2 and/or IL-7. None of these combinations induced the proliferation of CD4+CD8+ double positive thymocytes. Finally, DN were separated into CD3+ and CD3- populations and their responsiveness was investigated, because recent reports strongly suggest that CD3+ DN thymocytes are a mature subset of different lineage rather than precursors of SP thymocytes. CD3+ DN proliferated in response to IL-7, TNF-alpha + IL-2, and IL-1 + IL-2. CD3- DN did not respond to IL-7 or to IL-1 + IL-2, but did respond to TNF-alpha + IL-2. Finally, we detected TNF-alpha production by a cloned line of thymic macrophages, as well as by DN adult thymocytes. These results suggest that cytokines alone are capable of potent growth stimuli for thymocytes, and indicate that different combinations of these molecules act selectively on thymocytes at different developmental stages.  相似文献   

2.
IL-12 has been reported to affect thymic T cell selection, but the role of IL-12 in thymic involution has not been studied. We found that in vivo, IL-12b knockout (IL-12b(-/-)) mice exhibited accelerated thymic involution compared with wild-type (WT) B6 mice. This is characterized by an increase in thymocytes with the early development stage phenotype of CD25(-)CD44(+)CD4(-)CD8(-) in aged IL-12b(-/-) mice. Histologically, there were accelerated degeneration of thymic extracellular matrix and blood vessels, a significantly decreased thymic cortex/medulla ratio, and increased apoptotic cells in aged IL-12b(-/-) mice compared with WT mice. There was, however, no apparent defect in thymic structure and thymocyte development in young IL-12(-/-) mice. These results suggest the importance of IL-12 in maintaining thymic integrity and function during the aging process. Surprisingly, in WT B6 mice, there was no age-related decrease in the levels of IL-12 produced from thymic dendritic cells. Stimulation of thymocytes with IL-12 alone also did not enhance the thymocyte proliferative response in vitro. IL-12, however, provided a strong synergistic effect to augment the IL-7 or IL-2 induced thymocyte proliferative response, especially in aged WT and IL-12b(-/-) mice. Our data strongly support the role of IL-12 as an enhancement cytokine, which acts through its interactions with other cytokines to maintain thymic T cell function and development during aging.  相似文献   

3.
IL-6 has been demonstrated by in vitro studies to be a cytokine involved in thymocyte activation We show herein that thymocytes cultured at high concentrations in the absence of comitogen respond to IL-1 and, to a lesser degree, to GM-CSF, by producing IL-6. This phenomenon disappears rapidly with decreasing cell densities, suggesting the involvement of a minor cellular component of the thymus which may be solely responsible for or cooperate in IL-6 production. We have analysed several thymic subpopulations for IL-6 production and show that accessory cells, and eventually their precursors, are the major if not exclusive, producers of this cytokine. Mature steroid-resistant thymocytes do not secrete IL-6. Production of IL-6 by total CD4-CD8- thymic cells is largely reduced by the depletion of mature accessory cells which express I-A and Mac-1 antigens. As shown previously, accessory cell precursors within the CD4-CD8- compartment are induced to differentiate into M phi and DC in response to IL-1 and GM-CSF. We provide evidence that this maturation is associated with IL-6 production. Thymic DC and phagocytic cells of the thymic reticulum (P-TR) in vitro produce high levels of IL-6 which are enhanced by GM-CSF or IL-1. These factors have a synergistic effect on IL-6 production by total thymocytes, and on CD4-CD8- cells that are not depleted for mature I-A+ Mac-1+ accessory cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
IL-4-supported induction of cytolytic T lymphocytes requires IL-2 and IL-6   总被引:1,自引:0,他引:1  
Previous work indicated that a CTL response can be generated by the combination of IL-2 plus IL-6 or IL-4 alone. Because of the ubiquitous production of IL-6 and its apparent ability to induce IL-2, we explored the interdependence of these lymphokines in supporting a CTL response from murine thymocytes. For thymocytes cultured in IL-4, further addition of IL-6 enhanced thymocyte proliferation. In addition, a role for IL-6 in thymocyte activation was indicated by the ability of anti-IL-6 mAb to block both IL-4-directed proliferation and the cytotoxic response found in the presence of IL-4. The addition of IL-2 to limiting doses of IL-4 augmented the CTL response; however, the response to high levels of IL-4 was not augmented by addition of IL-2. Consistent with this apparent involvement of IL-2 in the IL-4-mediated response we found: (a) that mAb to IL-2 significantly reduced the CTL response generated in the presence of IL-4; (b) that IL-2 activity was present in culture supernatant following incubation of thymocytes with high levels of IL-4; and (c) that enhanced IL-2 receptor expression found in the presence of IL-4 was blocked with the addition of anti-IL-2 antibody to the thymocyte culture. In contrast to the data for proliferation, anti-IL-4 mAb had no effect on the generation of CTL in the presence of IL-2 + IL-6 but readily blocked the CTL response to IL-4. These results indicate that, for thymocyte responders, the CD8+ CTL generated in the presence of IL-4 require both IL-2 and IL-6.  相似文献   

5.
Human thymocytes and thymocyte subsets were examined for their proliferative response to recombinant interleukin-4 (IL-4) and interleukin-3 (IL-3) in serum-free cultures. IL-4 induced marked proliferation of thymocytes after PHA and TPA stimulation, in contrast to the marginal response of T cells from adult peripheral blood. However, depletion of thymocytes bearing the CD3 antigen diminished the IL-4-induced proliferation of thymocytes, indicating that the response of thymocytes to IL-4 is mainly mediated by the CD3-positive cells. Phenotypic changes after culture with IL-4 showed an increase in the percentage of total thymocytes expressing mature T cell antigens (CD3, CD5, and TCR-1) and a decrease in CD1-positive cells. In addition there was an increase in the percentage of CD4+8- cells in both nylon wool-separated thymocytes and CD3-depleted cells with the disappearance of most of the CD4+8+ cells. However, an increase in the percentage of CD4-8- cells was also observed. The IL-4-responding cells do, however, express the mature T cell antigen, CD5, in high density. The effect of IL-3 on the proliferation of human thymocytes was very low and detected only when the thymocytes were cultured in serum-free medium. Depletion of CD3-positive cells did not diminish the IL-3-mediated proliferation of thymocytes, indicating that IL-3-responsive thymocytes are more immature than the subset of thymocytes which responds to IL-4. These results suggest that IL-4 and IL-3 play different roles in the development of human T cells.  相似文献   

6.
CD45R is a high molecular weight (p205/220) form of a series of transmembrane glycoproteins, collectively known as CD45 and present in some form on all lymphoid cells. We have proposed that CD45R+ thymocytes, a minority (15 to 30%) of total thymocytes, represent the generative thymic lineage whereas CD45 p180+ thymocytes are destined for intrathymic death. To test this hypothesis, we prepared human thymus fractions enriched for the expression of CD45R by exhaustive depletion of CD45 p180+ cells, as well as progenitor CD3-4-8- "multinegative" thymocytes which are predominantly CD45R+. Northern analysis of RNA extracted from CD45 p180- and multinegative thymus fractions demonstrated that these populations are enriched for cells able to synthesize mRNA encoding IL-2 and IL-2R after mitogenic stimulation, as compared to unfractionated thymus, consistent with the properties expected for generative thymocytes. Postulating that the CD45R glycoprotein might represent an important signal delivery molecule, we analyzed the ability of mAb specific for CD45 epitopes to synergize with suboptimal amounts of PHA and PMA in the stimulation of IL-2 mRNA production by multinegative thymocytes. We found that CD45R-specific mAb synergizes strongly with PHA/PMA to stimulate IL-2 and IL-2R mRNA expression. In contrast, mAb to CD45 common determinants were unable to synergize. Multinegative thymocytes depleted of all CD45 p180+ cells were compared to total multinegative cells and found to synthesize fourfold greater levels of IL-2 mRNA after stimulation with anti-CD45R mAb. This CD45 p180- multinegative subset is enriched for cells expressing a high density of CD45R, and for CD45- thymus cells, suggesting a possible enrichment for nonlymphoid cells which may play a role in the stimulation process. Our results suggest that the extended amino acid insert of CD45R plays a fundamental role in transmembrane signalling, and that CD45R may be a primary signal transducer for developing thymic progenitor cells.  相似文献   

7.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

8.
The nature of the signals that influence thymocyte selection and determine the fate of CD4(+)8(+) (double positive) thymocytes remains unclear. Cytokines produced locally in the thymus may modulate signals delivered by TCR-MHC/peptide interactions and thereby influence the fate of double-positive thymocytes. Because the IL-2/IL-2R signaling pathway has been implicated in thymocyte and peripheral T cell survival, we investigated the possibility that IL-2/IL-2R interactions contribute to the deletion of self-reactive, Ag-specific thymocytes. By using nontransgenic and transgenic IL-2-sufficient and -deficient animal model systems, we have shown that during TCR-mediated thymocyte apoptosis, IL-2 protein is expressed in situ in the thymus, and apoptotic thymocytes up-regulate expression of IL-2RS: IL-2R(+) double-positive and CD4 single-positive thymocytes undergoing activation-induced cell death bind and internalize IL-2. IL-2-deficient thymocytes are resistant to TCR/CD3-mediated apoptotic death, which is overcome by providing exogenous IL-2 to IL-2(-/-) mice. Furthermore, disruption or blockade of IL-2/IL-2R interactions in vivo during Ag-mediated selection rescues some MHC class II-restricted thymocytes from apoptosis. Collectively, these findings provide evidence for the direct involvement of the IL-2/IL-2R signaling pathway in the deletion of Ag-specific thymocyte populations and suggest that CD4 T cell hyperplasia and autoimmunity in IL-2(-/-) mice is a consequence of ineffective deletion of self-reactive T cells.  相似文献   

9.
10.
IL-6 is an intermediate in IL-1-induced thymocyte proliferation   总被引:7,自引:0,他引:7  
Both IL-1 and IL-6 have been shown to be comitogenic for lectin-stimulated thymocytes. Thymocytes cultured in the presence of IL-1 produce IL-6 themselves. This IL-6 production is caused by a cell population with low buoyant density. After removal of these cells, IL-6 or IL-2 are still co-mitogenic for thymocytes whereas IL-1 is not. Addition of IL-1 to such thymocytes renders them about 100-fold more sensitive to IL-6. At all conditions proliferation is inhibitable with antibodies to IL-2 and to the IL-2R. Our experiments show that IL-1-driven proliferation of thymocytes is dependent on endogenous IL-6 production and that in the classical thymocyte assay IL-1 has a dual role: it induces IL-6 production and it greatly increases the sensitivity for IL-6.  相似文献   

11.
IL-7 induced the proliferation of normal thymocytes and the effect was synergistically potentiated by a small dose of IL-2, which by itself hardly affected thymocyte proliferation. No synergism was observed between IL-7 and any one of the other lymphokines including IL-1, IL-3, and IL-4. The thymocyte culture stimulated with IL-7 and IL-2 consisted of single positive (CD4+CD8- and CD4-CD8+) and double negative (CD4-CD8-) populations, and double positive (CD4+CD8+) cells were completely deleted. Both single positive and double negative thymocytes expressed CD3, but only the former exhibited V beta 8 and V beta 6 in an expected proportion (approximately 30% in BALB/c mice) and the latter none at all. Immunoprecipitation of the cultured thymocytes by anti-TCR gamma antibody, on the other hand, revealed the presence of a TCR gamma chain. Taken together, these results indicated that the thymocyte cultured with IL-7 and IL-2 consisted of mature T cells bearing alpha beta or gamma delta TCR. Experiments using preselected thymocyte subpopulations indicated that double negative cells responded to both IL-7 and IL-2 with positive synergism when combined, while thymocytes enriched for single positive cells preferentially responded to IL-7 with little response to IL-2 and no detectable synergism. Double positive thymocytes showed no proliferation in response to IL-7 and IL-2. In contrast to single positive thymocytes, splenic T cells hardly responded to IL-7, although significant proliferation was induced in the presence of a low dose of IL-2. Thymocytes cultured with IL-7 and IL-2 showed little nonspecific cytotoxic activity, but responded to Con A or alloantigen, whereas those stimulated with a high dose of IL-2 alone exhibited potent cytotoxic activity. These results indicated that IL-7 was involved in the generation of immunocompetent T cells in the thymus in concert with IL-2.  相似文献   

12.
Double-negative (CD4-/CD8-) thymocytes from young adult mice can be separated into two distinct subpopulations on the basis of the binding of mAb 7D4 directed against the receptor for IL-2. The 7D4+ cells have predominantly nonrearranged TCR beta-chain genes and express incomplete 1.0-kb beta-messages, whereas the 7D4- cells have rearranged beta-genes and express complete 1.3-kb as well as incomplete 1.0-kb beta-messages. These two populations of double-negative thymocytes also differ in their responses to IL-2 and IL-4. The 7D4+ cells are nonresponsive to IL-2 alone or IL-2 plus PMA but they are stimulated to proliferate by the combination of IL-4 and PMA. In contrast, the 7D4- cells vigorously proliferate in response to IL-2 alone or IL-2 plus PMA but they respond poorly to IL-4 alone or IL-4 plus PMA. These results suggest that IL-2 and IL-4 may be involved in the stimulation of immature thymocytes at distinct steps of their differentiation. IL-4 together with PMA stimulate immature thymocytes which seem to express the IL-2R but do not respond to IL-2.  相似文献   

13.
IL-2R alpha-chain is expressed on a subset of mouse CD4- and CD8-, double negative (DN) thymocytes. This expression of IL-2R alpha-chain on some DN thymocytes in the mouse has led to the proposal that IL-2 might serve as a principal growth and/or differentiation factor for immature thymocytes. However, previous histologic observations have indicated that IL-2R alpha-chain is not expressed on the subcapsular thymic blasts (an area rich in DN cells) in either huma or rat thymus, whereas all three species display IL-2R expression on a few cells in the thymic medulla. Therefore, we characterized rat DN thymocytes to determine whether they contained an IL-2R+ population. The results show that rat thymic DN cells share several characteristics with mouse DN cells. However, most of the rat strains do not express the IL-2R on DN cells as shown either by immunofluorescence or by IL-2 binding and receptor cross-linking. Thus, the rare medullary IL-2R+ cells were not found in the DN cells. Only in the exceptional F344 rat strain is the IL-2R alpha-chain expressed on a major proportion of thymocytes, including both DN cells and small cortical-type thymocytes. Furthermore, rat DN cells do not contain detectable IL-2 mRNA or cytoplasmic IL-2 activity, thus supporting the conclusion that it is unlikely that IL-2 and IL-2R serve to maintain the proliferation of rat DN thymocytes in vivo. The possible significance of in vivo expression of IL-2R alpha-chain on immature thymocytes in the mouse and in a single rat strain is discussed.  相似文献   

14.
The source of IL-4 required for priming naive T cells into IL-4-secreting effectors has not been clearly identified. Here we show that upon TCR stimulation, thymus NK1-CD4+8- T cells produced IL-4, the magnitude of which was inversely correlated with age. This IL-4 production response by Th2-prone BALB/c mice was approximately 9-fold that of Th1-prone C57BL/10 mice. More than 90% of activated NK1-CD4+8- thymocytes did not use the invariant V alpha 14-J alpha 281 chain characteristic of typical CD1-restricted NK1+CD4+ T cells. Stat6-null NK1-CD4+8- thymocytes produced bioactive IL-4, with induction of IL-4 mRNA expression within 1 h of stimulation. Our results support the possibility that TCR repertoire-diverse conventional NK1-CD4+ T cells are a potential IL-4 source for directing naive T cells toward Th2/type 2 CD8+ T cell (Tc2) effector development.  相似文献   

15.
The expression of the TCR/CD3 complex and the IL-2R alpha chain (p55) on fetal thymocytes has been analyzed by flow cytometry (FCM). Two-parameter immunofluorescence identified three subpopulations which were respectively IL-2R alpha-/CD3+, IL-2R alpha+/CD3-, or IL-2R alpha-/CD3-; no detectable population of IL-2R alpha+/CD3+ cells was found in unstimulated fetal thymocytes. Fractionation by "panning" and by sterile flow cytometric separation was used to characterize the functional responsiveness of these three subpopulations to a variety of stimuli. All three populations proliferated in response to PMA + ionomycin + rIL-2. In contrast, stimulation with anti-CD3 + IL-2 induced proliferation in IL-2R alpha-/CD3+ and IL-2R alpha-/CD3- but not in IL-2R alpha+/CD3- thymocytes. IL-2R alpha- cells, including sorted IL-2R alpha-/CD3- thymocytes, underwent a phenotypic change in response to in vitro stimulation with anti-CD3 + IL-2, resulting in the appearance of an IL-2R alpha+/CD3+ population that was not detected in freshly isolated thymocytes. The ability of fractionated fetal thymocytes to produce lymphokine in response to PMA + ionomycin was also evaluated. Only the IL-2R alpha-/CD3- fraction generated detectable IL-2. These findings demonstrate for the first time that CD3 and IL-2R alpha are expressed in a mutually exclusive fashion in fetal thymocytes and define three subpopulations of thymocytes that differ significantly in their proliferative and differentiative responses to TCR-mediated, IL-2R-mediated, and pharmacologic stimulation.  相似文献   

16.
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments.  相似文献   

17.
Interleukin-1 (IL-1) is known to synergize with phorbol esters in the induction of interleukin-2 (IL-2) expression in T-lymphoid leukemia cells and proliferation of mouse thymocytes. We used a plasmid construct containing the bacterial gene for chloramphenicol acetyltransferase under the control of the human IL-2 promoter to study the nature of this synergism in the murine thymoma cell line EL4. Although IL-1 induction of the IL-2 promoter in these cells required costimulus with phorbol myristate acetate, the signal induced by IL-1 was qualitatively different. We provide evidence to support the hypothesis that the phorbol ester signal is mediated by protein kinase C, and we show that the IL-1 signal is not. That IL-1 and phorbol myristate acetate represent different stimuli was shown by their response to protein kinase C inhibitors, capacity to synergize with increased intracellular free calcium, and requirement for protein synthesis. In addition we show that pretreatment with IL-1 can prime EL4 cells to subsequent activation by concentrations of phorbol esters not normally sufficient to induce IL-2 expression. Pretreated cells remained primed for at least 40 h after removal of the IL-1. Neither phorbol myristate acetate nor a calcium ionophore was capable of preactivating EL4 cells.  相似文献   

18.
Day-14 fetal CD4-, CD8- thymocytes showed a greater proliferative response to PMA + IL-4 than did adult double-negative thymocytes. In contrast, adult double-negative thymocytes were more responsive to PMA + IL-1 + IL-2 or to IL-1 + IL-2 alone. The adult double-negative thymocytes showed significantly greater proliferation than fetal thymocytes after stimulation via anti-CD3 or anti-Thy-1 in the presence or absence of interleukins (IL-1 + IL-2 or IL-4). Adult CD4-, CD8- thymocytes also exhibited greater calcium mobilization following anti-CD3 stimulation IL-2-dependent activation with anti-Thy-1 or IL-1 + IL-2 in the absence of PMA resulted in marked expansion of CD 3+, F23.1+, CD4-, CD8- thymocytes, a population absent in fetal thymocytes but constituting 4% of pre-cultured CD4-, CD8- adult thymocytes. IL-4 + PMA failed to expand this CD 3+ population. It is hypothesized that before expression of functional TCR, T cell development may be more dependent on activation pathways not using IL-2; after TCR expression, IL-2-dependent pathways, including Thy-1-mediated stimulation, become functional.  相似文献   

19.
We have shown that human thymic epithelial (TE) cells produce IL-1 alpha, IL-1 beta, and TE cells bind to thymocytes by CD2 and LFA-1 molecules on thymocytes and LFA-3, ICAM-1 on TE cells. We investigated whether ligand binding to LFA-3 on human TE cells can modulate TE cell IL-1 production. First, we investigated the ability of human thymocytes to regulate IL-1 release by TE cells. Both autologous and allogenic emetine-treated thymocytes when cultured with TE cells augmented IL-1 release by TE cells. The augmentation of IL-1 release was cell density dependent. Inasmuch as the interaction between thymocytes and TE cells is mediated in part by CD2 molecules on thymocytes and LFA-3 molecules on TE cells we next determined the effect on IL-1 release of ligand binding (anti-LFA-3 mAb TS2/9) to TE cell surface LFA-3. Purified anti-LFA-3 mAb augmented IL-1 release in a concentration-dependent fashion. The anti-LFA-3-mediated augmentation of IL-1 release required both new protein and RNA synthesis as shown by the ability of cycloheximide and actinomycin-D to inhibit augmentation of IL-1 production by TE cells, and by direct quantitation of IL-1 alpha and IL-1 beta mRNA by Northern blot analysis. Both F(ab)'2 and Fab' fragments of anti-LFA-3 mAb augmented IL-1 alpha and IL-1 beta mRNA production, indicating that monovalent binding to cell surface LFA-3 was sufficient to provide the inducing signal. The identification of LFA-3, the cell surface ligand for thymocyte CD2 molecules, as a molecule via which TE cell-derived cytokine production may be regulated suggests a mechanism at the cell surface by which direct TE cell-thymocyte interaction might result in the triggering of local IL-1 release within the human thymic microenvironment.  相似文献   

20.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号