首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleoside diphosphates generated by glycosyltransferases in the fungal, plant, and mammalian cell secretory pathways are converted into monophosphates to relieve inhibition of the transferring enzymes and provide substrates for antiport transport systems by which the entrance of nucleotide sugars from the cytosol into the secretory pathway lumen is coupled to the exit of nucleoside monophosphates. Analysis of the yeast Schizosaccharomyces pombe genome revealed that it encodes two enzymes with potential nucleoside diphosphatase activity, Spgda1p and Spynd1p. Characterization of the overexpressed enzymes showed that Spgda1p is a GDPase/UDPase, whereas Spynd1p is an apyrase because it hydrolyzed both nucleoside tri and diphosphates. Subcellular fractionation showed that both activities localize to the Golgi. Individual disruption of their encoding genes did not affect cell viability, but disruption of both genes was synthetically lethal. Disruption of Spgda1+ did not affect Golgi N- or O-glycosylation, whereas disruption of Spynd1+ affected Golgi N-mannosylation but not O-mannosylation. Although no nucleoside diphosphatase activity was detected in the endoplasmic reticulum (ER), N-glycosylation mediated by the UDP-Glc:glycoprotein glucosyltransferase (GT) was not severely impaired in mutants because first, no ER accumulation of misfolded glycoproteins occurred as revealed by the absence of induction of BiP mRNA, and second, in vivo GT-dependent glucosylation monitored by incorporation of labeled Glc into folding glycoproteins showed a partial (35-50%) decrease in Spgda1 but was not affected in Spynd1 mutants. Results show that, contrary to what has been assumed to date for eukaryotic cells, in S. pombe nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments. It is tentatively suggested that ER-Golgi vesicle transport might be involved in nucleoside diphosphate hydrolysis.  相似文献   

2.
Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn decrease mannosylation of proteins and lipids in this compartment. In fact, we found a partial block in O- and N-glycosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of invertase. In addition, mannosylinositolphosphorylceramide levels were drastically reduced.  相似文献   

3.
4.
《The Journal of cell biology》1994,126(6):1393-1406
The small GTPase Rab1 is required for vesicular traffic from the ER to the cis-Golgi compartment, and for transport between the cis and medial compartments of the Golgi stack. In the present study, we examine the role of guanine nucleotide dissociation inhibitor (GDI) in regulating the function of Rab1 in the transport of vesicular stomatitis virus glycoprotein (VSV-G) in vitro. Incubation in the presence of excess GDI rapidly (t1/2 < 30 s) extracted Rab1 from membranes, inhibiting vesicle budding from the ER and sequential transport between the cis-, medial-, and trans-Golgi cisternae. These results demonstrate a direct role for GDI in the recycling of Rab proteins. Analysis of rat liver cytosol by gel filtration revealed that a major pool of Rab1 fractionates with a molecular mass of approximately 80 kD in the form of a GDI-Rab1 complex. When the GDI-Rab1 complex was depleted from cytosol by use of a Rab1-specific antibody, VSV-G failed to exit the ER. However, supplementation of depleted cytosol with a GDI-Rab1 complex prepared in vitro from recombinant forms of Rab1 and GDI efficiently restored export from the ER, and transport through the Golgi stack. These results provide evidence that a cytosolic GDI-Rab1 complex is required for the formation of non-clathrin-coated vesicles mediating transport through the secretory pathway.  相似文献   

5.
Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  相似文献   

6.
Two new members (Sar1a and Sar1b) of the SAR1 gene family have been identified in mammalian cells. Using immunoelectron microscopy, Sar1 was found to be restricted to the transitional region where the protein was enriched 20-40-fold in vesicular carriers mediating ER to Golgi traffic. Biochemical analysis revealed that Sar1 was essential for an early step in vesicle budding. A Sar1-specific antibody potently inhibited export of vesicular stomatitis virus glycoprotein (VSV-G) from the ER in vitro. Consistent with the role of guanine nucleotide exchange in Sar1 function, a trans-dominant mutant (Sar1a[T39N]) with a preferential affinity for GDP also strongly inhibited vesicle budding from the ER. In contrast, Sar1 was not found to be required for the transport of VSV-G between sequential Golgi compartments, suggesting that components active in formation of vesicular carriers mediating ER to Golgi traffic may differ, at least in part, from those involved in intra-Golgi transport. The requirement for novel components at different stages of the secretory pathway may reflect the recently recognized differences in protein transport between the Golgi stacks as opposed to the selective sorting and concentration of protein during export from the ER.  相似文献   

7.
Golgi-bound Rab34 is a novel member of the secretory pathway   总被引:1,自引:0,他引:1       下载免费PDF全文
Golgi-localized Rab34 has been implicated in repositioning lysosomes and activation of macropinocytosis. Using HeLa cells, we undertook a detailed investigation of Rab34 involvement in intracellular vesicle transport. Immunoelectron microscopy and immunocytochemistry confirmed that Rab34 is localized to the Golgi stack and that active Rab34 shifts lysosomes to the cell center. Contrary to a previous report, we found that Rab34 is not concentrated at membrane ruffles and is not involved in fluid-phase uptake. Also, Rab34-induced repositioning of lysosomes does not affect mannose 6-phosphate receptor trafficking. Most strikingly, HeLa cells depleted of Rab34 by transfection with dominant-negative Rab34 or after RNA interference, failed to transport the temperature-sensitive vesicular stomatitis virus G-protein (VSVG) fused to green fluorescent protein (VSVG-GFP) from the Golgi to the plasma membrane. Transfection with mouse Rab34 rescued this defect. Using endogenous major histocompatibility complex class I (MHCI) as a marker, an endoglycosidase H resistance assay showed that endoplasmic reticulum (ER) to medial Golgi traffic remains intact in knockdown cells, indicating that Rab34 specifically functions downstream of the ER. Further, brefeldin A treatment revealed that Rab34 effects intra-Golgi transport, not exit from the trans-Golgi network. Collectively, these results define Rab34 as a novel member of the secretory pathway acting at the Golgi.  相似文献   

8.
Biomolecules in the secretory pathway use membrane trafficking for reaching their final intracellular destination or for secretion outside the cell. This highly dynamic and multipartite process involves different organelles that communicate to one another while maintaining their identity, shape, and function. Recent studies unraveled new mechanisms of interorganelle communication that help organize the early secretory pathway. We highlight how the spatial proximity between endoplasmic reticulum (ER) exit sites and early Golgi elements provides novel means of ER–Golgi communication for ER export. We also review recent findings on how membrane contact sites between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi complex.  相似文献   

9.
The glycoside digitonin was used to selectively permeabilize the plasma membrane exposing functionally and morphologically intact ER and Golgi compartments. Permeabilized cells efficiently transported vesicular stomatitis virus glycoprotein (VSV-G) through sealed, membrane-bound compartments in an ATP and cytosol dependent fashion. Transport was vectorial. VSV-G protein was first transported to punctate structures which colocalized with p58 (a putative marker for peripheral punctate pre-Golgi intermediates and the cis-Golgi network) before delivery to the medial Golgi compartments containing alpha-1,2-mannosidase II and processing of VSV-G to endoglycosidase H resistant forms. Exit from the ER was inhibited by an antibody recognizing the carboxyl-terminus of VSV-G. In contrast, VSV-G protein colocalized with p58 in the absence of Ca2+ or the presence of an antibody which inhibits the transport component NSF (SEC18). These studies demonstrate that digitonin permeabilized cells can be used to efficiently reconstitute the early secretory pathway in vitro, allowing a direct comparison of the morphological and biochemical events involved in vesicular tafficking, and identifying a key role for the p58 containing compartment in ER to Golgi transport.  相似文献   

10.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

11.
Lectins and traffic in the secretory pathway   总被引:7,自引:0,他引:7  
Hauri H  Appenzeller C  Kuhn F  Nufer O 《FEBS letters》2000,476(1-2):32-37
Evidence is accumulating that intracellular animal lectins play important roles in quality control and glycoprotein sorting along the secretory pathway. Calnexin and calreticulin in conjunction with associated chaperones promote correct folding and oligomerization of many glycoproteins in the endoplasmic reticulum (ER). The mannose lectin ERGIC-53 operates as a cargo receptor in transport of glycoproteins from ER to Golgi and the homologous lectin VIP36 may operate in quality control of glycosylation in the Golgi. Exit from the Golgi of lysosomal hydrolases to endosomes requires mannose 6-phosphate receptors and exit to the apical plasma membrane may also involve traffic lectins. Here we discuss the features of these lectins and their role in glycoprotein traffic in the secretory pathway.  相似文献   

12.
The malaria parasite Plasmodium falciparum harbours a relict plastid (termed the apicoplast) that has evolved by secondary endosymbiosis. The apicoplast is surrounded by four membranes, the outermost of which is believed to be part of the endomembrane system. Nuclear-encoded apicoplast proteins have a two-part N-terminal extension that is necessary and sufficient for translocation across these four membranes. The first domain of this N-terminal extension resembles a classical signal peptide and mediates translocation into the secretory pathway, whereas the second domain is homologous to plant chloroplast transit peptides and is required for the remaining steps of apicoplast targeting. We explored the initial, secretory pathway component of this targeting process using green fluorescent reporter protein constructs with modified leaders. We exchanged the apicoplast signal peptide with signal peptides from other secretory proteins and observed correct targeting, demonstrating that apicoplast targeting is initiated at the general secretory pathway of P. falciparum. Furthermore, we demonstrate by immunofluorescent labelling that the apicoplast resides on a small extension of the endoplasmic reticulum (ER) that is separate from the cis-Golgi. To define the position of the apicoplast in the endomembrane pathway in relation to the Golgi we tracked apicoplast protein targeting in the presence of the secretory inhibitor Brefeldin A (BFA), which blocks traffic between the ER and Golgi. We observe apicoplast targeting in the presence of BFA despite clear perturbation of ER to Golgi traffic by the inhibitor, which suggests that the apicoplast resides upstream of the cis-Golgi in the parasite's endomembrane system. The addition of an ER retrieval signal (SDEL) - a sequence recognized by the cis-Golgi protein ERD2 - to the C-terminus of an apicoplast-targeted protein did not markedly affect apicoplast targeting, further demonstrating that the apicoplast is upstream of the Golgi. Apicoplast transit peptides are thus dominant over an ER retention signal. However, when the transit peptide is rendered non-functional (by two point mutations or by complete deletion) SDEL-specific ER retrieval takes over, and the fusion protein is localized to the ER. We speculate either that the apicoplast in P. falciparum resides within the ER directly in the path of the general secretory pathway, or that vesicular trafficking to the apicoplast directly exits the ER.  相似文献   

13.
Protein quality control is an essential function of the endoplasmic reticulum. Misfolded proteins unable to acquire their native conformation are retained in the endoplasmic reticulum, retro-translocated back into the cytosol, and degraded via the ubiquitin-proteasome system. We show that efficient degradation of soluble malfolded proteins in yeast requires a fully competent early secretory pathway. Mutations in proteins essential for ER-Golgi protein traffic severely inhibit ER degradation of the model substrate CPY*. We found ER localization of CPY* in WT cells, but no other specific organelle for ER degradation could be identified by electron microscopy studies. Because CPY* is degraded in COPI coat mutants, only a minor fraction of CPY* or of a proteinaceous factor required for degradation seems to enter the recycling pathway between ER and Golgi. Therefore, we propose that the disorganized structure of the ER and/or the mislocalization of Kar2p, observed in early secretory mutants, is responsible for the reduction in CPY* degradation. Further, we observed that mutations in proteins directly involved in degradation of malfolded proteins (Der1p, Der3/Hrd1p, and Hrd3p) lead to morphological changes of the endoplasmic reticulum and the Golgi, escape of CPY* into the secretory pathway and a slower maturation rate of wild-type CPY.  相似文献   

14.
The endoplasmic reticulum (ER) is a fundamental organelle required for protein assembly, lipid biosynthesis, and vesicular traffic, as well as calcium storage and the controlled release of calcium from the ER lumen into the cytosol. Membranes functionally linked to the ER by vesicle-mediated transport, such as the Golgi complex, endosomes, vacuoles-lysosomes, secretory vesicles, and the plasma membrane, originate largely from proteins and lipids synthesized in the ER. In this review we will discuss the structural organization of the ER and its inheritance.  相似文献   

15.
Cholera toxin (CT) follows a glycolipid-dependent entry pathway from the plasma membrane through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER) where it is retro-translocated into the cytosol to induce toxicity. Whether access to the Golgi apparatus is necessary for transport to the ER is not known. Exo2 is a small chemical that rapidly blocks anterograde traffic from the ER to the Golgi and selectively disrupts the Golgi apparatus but not the TGN. Here we use Exo2 to determine the role of the Golgi apparatus in CT trafficking. We find that under the condition of complete Golgi ablation by Exo2, CT reaches the TGN and moves efficiently into the ER without loss in toxicity. We propose that even in the absence of Exo2 the glycolipid pathway that carries the toxin from plasma membrane into the ER bypasses the Golgi apparatus entirely.  相似文献   

16.
The traffic of Kv4 K+ channels is regulated by the potassium channel interacting proteins (KChIPs). Kv4.2 expressed alone was not retained within the ER, but reached the Golgi complex. Coexpression of KChIP1 resulted in traffic of the channel to the plasma membrane, and traffic was abolished when mutations were introduced into the EF-hands with channel captured on vesicular structures that colocalized with KChIP1(2-4)-EYFP. The EF-hand mutant had no effect on general exocytic traffic. Traffic of Kv4.2 was coat protein complex I (COPI)-dependent, but KChIP1-containing vesicles were not COPII-coated, and expression of a GTP-loaded Sar1 mutant to block COPII function more effectively inhibited traffic of vesicular stomatitis virus glycoprotein (VSVG) than did KChIP1/Kv4.2 through the secretory pathway. Therefore, KChIP1seems to be targeted to post-ER transport vesicles, different from COPII-coated vesicles and those involved in traffic of VSVG. When expressed in hippocampal neurons, KChIP1 co-distributed with dendritic Golgi outposts; therefore, the KChIP1 pathway could play an important role in local vesicular traffic in neurons.  相似文献   

17.
Transport and sorting of lipids must occur with specific mechanisms because the membranes of intracellular organelles differ in lipid composition even though most lipid biosynthesis begins in the ER. In yeast, ceramide is synthesized in the ER and transferred to the Golgi apparatus where inositolphosphorylceramide (IPC) is formed. These two facts imply that ceramide can be transported to the Golgi independent of vesicular traffic because IPC synthesis still continues when vesicular transport is blocked in sec mutants. Nonvesicular IPC synthesis in intact cells is not affected by ATP depletion. Using an in vitro assay that reconstitutes the nonvesicular pathway for transport of ceramide, we found that transport is temperature and cytosol dependent but energy independent. Preincubation of ER and Golgi fractions together at 4 degrees C, where ceramide transport does not occur, rendered the transport reaction membrane concentration independent, providing biochemical evidence that ER-Golgi membrane contacts stimulate ceramide transport. A cytosolic protease-sensitive factor is required after establishment of ER-Golgi contacts.  相似文献   

18.
In Saccharomyces cerevisiae a Golgi lumenal GDPase (ScGda1p) generates GMP, the antiporter required for entry of GDP-mannose, from the cytosol, into the Golgi lumen. Scgda1 deletion strains have severe defects in N- and O-mannosylation of proteins and glycosphingolipids. ScGda1p has also significant UDPase activity even though S. cerevisiae does not utilize uridine nucleotide sugars in its Golgi lumen. Kluyveromyces lactis, a species closely related to S. cerevisiae, transports UDP-N-acetylglucosamine into its Golgi lumen, where it is the sugar donor for terminal N-acetylglucosamine of the mannan chains. We have identified and cloned a K. lactis orthologue of ScGda1p. KlGda1p is 65% identical to ScGda1p and shares four apyrase conserved regions with other nucleoside diphosphatases. KlGda1p has UDPase activity as ScGda1p. Transport of both GDP-mannose, and UDP-GlcNAc was decreased into Golgi vesicles from Klgda1 null mutants, demonstrating that KlGda1p generates both GMP and UMP required as antiporters for guanosine and uridine nucleotide sugar transport into the Golgi lumen. Membranes from Klgda1 null mutants showed inhibition of glycosyltransferases utilizing uridine- and guanosine-nucleotide sugars, presumably due to accumulation of nucleoside diphosphates because the inhibition could be relieved by addition of apyrase to the incubations. KlGDA1 and ScGDA1 restore the wild-type phenotype of the other yeast gda1 deletion mutant. Surprisingly, KlGDA1 has only a role in O-glycosylation in K. lactis but also complements N-glycosylation defects in S. cerevisiae. Deletion mutants of both genes have altered cell wall stability and composition, demonstrating a broader role for the above enzymes.  相似文献   

19.
Most misfolded secretory proteins remain in the endoplasmic reticulum (ER) and are degraded by ER-associated degradation (ERAD). However, some misfolded proteins exit the ER and traffic to the Golgi before degradation. Using model misfolded substrates, with or without defined ER exit signals, we found misfolded proteins can depart the ER by continuing to exhibit the functional export signals present in the corresponding correctly folded proteins. Anterograde transport of misfolded proteins utilizes the same machinery responsible for exporting correctly folded proteins. Passive ER retention, in which misfolded proteins fail to exit the ER due to the absence of exit signals or the inability to functionally present them, likely contributes to the retention of nonnative proteins in the ER. Intriguingly, compromising ERAD resulted in increased anterograde trafficking of a misfolded protein with an ER exit signal, suggesting that ERAD and ER exit machinery can compete for binding of misfolded proteins. Disabling ERAD did not result in transport of an ERAD substrate lacking an export signal. This is an important distinction for those seeking possible therapeutic approaches involving inactivating ERAD in anticipation of exporting a partially active protein.  相似文献   

20.
We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号