首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FtsY, the Escherichia coli homologue of the eukaryotic signal recognition particle (SRP) receptor alpha-subunit, is located in both the cytoplasm and inner membrane. It has been proposed that FtsY has a direct targeting function, but the mechanism of its association with the membrane is unclear. FtsY is composed of two hydrophilic domains: a highly charged N-terminal domain (the A-domain) and a C-terminal GTP-binding domain (the NG-domain). FtsY does not contain any hydrophobic sequence that might explain its affinity for the inner membrane, and a membrane-anchoring protein has not been detected. In this study, we provide evidence that FtsY interacts directly with E.coli phospholipids, with a preference for anionic phospholipids. The interaction involves at least two lipid-binding sites, one of which is present in the NG-domain. Lipid association induced a conformational change in FtsY and greatly enhanced its GTPase activity. We propose that lipid binding of FtsY is important for the regulation of SRP-mediated protein targeting.  相似文献   

2.
In Escherichia coli, a signal recognition particle (SRP) has been identified which binds specifically to the signal sequence of presecretory proteins and which appears to be essential for efficient translocation of a subset of proteins. In this study we have investigated the function of E. coli FtsY which shares sequence similarity with the alpha-subunit of the eukaryotic SRP receptor ('docking protein') in the membrane of the endoplasmic reticulum. A strain was constructed which allows the conditional expression of FtsY. Depletion of FtsY is shown to cause the accumulation of the precursor form of beta-lactamase, OmpF and ribose binding protein in vivo, whereas the processing of various other presecretory proteins is unaffected. Furthermore, FtsY-depleted inverted cytoplasmic membrane vesicles are shown to be defective in the translocation of pre-beta-lactamase using an in vitro import assay. Subcellular localization studies revealed that FtsY is located in part at the cytoplasmic membrane with which it seems peripherally associated. These observations suggest that FtsY is the functional E. coli homolog of the mammalian SRP receptor.  相似文献   

3.
Shen X  Li S  Du Y  Mao X  Li Y 《FEMS microbiology letters》2012,327(2):164-171
FtsY is the receptor of the signal recognition particle that mediates the targeting of integral membrane proteins in bacteria. It was shown that in Escherichia coli, the N-terminal region of FtsY contributes to its interaction with the membrane, but it is not inserted into the membrane. However, this study presents evidence that in Streptomyces coelicolor, FtsY has a hydrophobic region at its N-terminus, which forms a membrane insertion structure and contributes significantly to the binding between FtsY and membrane. Through membrane protein extraction followed by immunoblotting, we demonstrated that deletion of the N-terminal residues 11-39 from the S. coelicolor FtsY (ScFtsY) drastically reduced its membrane-binding capability and that the N-terminus of ScFtsY alone was capable of targeting the soluble EGFP protein onto the membrane with high efficiency. Furthermore, in a labeling experiment with the membrane-impermeable probe Mal-PEG, the ScFtsY N-terminal region was protected by the membrane and was not labeled. This observation indicates that this region was inserted into the membrane.  相似文献   

4.
Targeting of many polytopic proteins to the inner membrane of prokaryotes occurs via an essential signal recognition particle-like pathway. FtsY, the Escherichia coli homolog of the eukaryotic signal recognition particle receptor alpha-subunit, binds to membranes via its amino-terminal AN domain. We demonstrate that FtsY assembles on membranes via interactions with phosphatidylethanolamine and with a trypsin-sensitive component. Both interactions are mediated by the AN domain of FtsY. In the absence of phosphatidylethanolamine, the trypsin-sensitive component is sufficient for binding and function of FtsY in the targeting of membrane proteins. We propose a two-step mechanism for the assembly of FtsY on the membrane similar to that of SecA on the E. coli inner membrane.  相似文献   

5.
Escherichia coli membrane protein biogenesis is mediated by a signal recognition particle and its membrane-associated receptor (FtsY). Although crucial for its function, it is still not clear how FtsY interacts with the membrane. Analysis of the structure/function differences between severely truncated active (NG+1) and inactive (NG) mutants of FtsY enabled us to identify an essential membrane-interacting determinant. Comparison of the three-dimensional structures of the mutants, combined with site-directed mutagenesis, modeling, and liposome-binding assays, revealed that FtsY contains a conserved autonomous lipid-binding amphipathic alpha-helix at the N-terminal end of the N domain. Deletion experiments showed that this helix is essential for FtsY function in vivo, thus offering, for the first time, clear evidence for the functionally important, physiologically relevant interaction of FtsY with lipids.  相似文献   

6.
Eitan A  Bibi E 《Journal of bacteriology》2004,186(8):2492-2494
Previous studies have proposed that the N-terminal A domain (approximately 200 amino acid residues) of the Escherichia coli signal recognition particle (SRP) receptor, FtsY, is required for membrane targeting. In contrast to this suggestion, we show that A domain-truncated versions of FtsY, harboring only domains N and G, are functional. Therefore, we propose that N and G domains constitute the core SRP receptor.  相似文献   

7.
Across evolution, the signal recognition particle pathway targets extra-cytoplasmic proteins to membranous translocation sites. Whereas the pathway has been extensively studied in Eukarya and Bacteria, little is known of this system in Archaea. In the following, membrane association of FtsY, the prokaryal signal recognition particle receptor, and SRP54, a central component of the signal recognition particle, was addressed in the halophilic archaea Haloferax volcanii. Purified H. volcanii FtsY, the FtsY C-terminal GTP-binding domain (NG domain) or SRP54, were combined separately or in different combinations with H. volcanii inverted membrane vesicles and examined by gradient floatation to differentiate between soluble and membrane-bound protein. Such studies revealed that both FtsY and the FtsY NG domain bound to H. volcanii vesicles in a manner unaffected by proteolytic pretreatment of the membranes, implying that in Archaea, FtsY association is mediated through the membrane lipids. Indeed, membrane association of FtsY was also detected in intact H. volcanii cells. The contribution of the NG domain to FtsY binding in halophilic archaea may be considerable, given the low number of basic charges found at the start of the N-terminal acidic domain of haloarchaeal FtsY proteins (the region of the protein thought to mediate FtsY-membrane association in Bacteria). Moreover, FtsY, but not the NG domain, was shown to mediate membrane association of H. volcanii SRP54, a protein that did not otherwise interact with the membrane.  相似文献   

8.
The signal recognition particle (SRP) mediates membrane targeting of translating ribosomes displaying a signal-anchor sequence. In Escherichia coli, SRP consists of 4.5S RNA and a protein, Ffh, that recognizes the signal peptide emerging from the ribosome and the SRP receptor at the membrane, FtsY. In the present work, we studied the interactions between the NG and M domains in Ffh and their rearrangements upon complex formation with 4.5S RNA and/or FtsY. In free Ffh, the NG and M domains are facing one another in an orientation that allows cross-linking between positions 231 in the G domain and 377 in the M domain. There are binding interactions between the two domains, as the isolated domains form a strong complex. The interdomain contacts are disrupted upon binding of Ffh to 4.5S RNA, consuming a part of the total binding energy of 4.5S RNA-Ffh association that is roughly equivalent to the free energy of domain binding to each other. In the SRP particle, the NG domain binds to 4.5S RNA in a region adjacent to the binding site of the M domain. Ffh binding to FtsY also requires a reorientation of NG and M domains. These results suggest that in free Ffh, the binding sites for 4.5S RNA and FtsY are occluded by strong domain-domain interactions which must be disrupted for the formation of SRP or the Ffh-FtsY complex.  相似文献   

9.
Targeting of many polytopic proteins to the inner membrane of prokaryotes occurs via an essential signal recognition particle-like pathway. Unlike the general secretory pathway, the proteins involved in this pathway and their activities appear in many respects to mirror closely those of their eukaryotic homologues. However, the Escherichia coli signal recognition particle receptor, FtsY, differs significantly at the amino terminus from the eukaryote homologue alpha-subunit of the signal recognition particle receptor. In addition, there is no prokaryote homologue of the transmembrane beta-subunit of the receptor. Therefore, FtsY must assemble on the membrane in a unique manner. Using assays designed to accurately discriminate membrane-bound proteins from aggregated material, we found that in contrast to a previous report, only amino acids 1-284 of FtsY are necessary and sufficient for membrane assembly. These amino acids together constitute a bona fide membrane binding domain that includes both the regions originally designated A and N based on sequence comparisons. Furthermore, we found that a membrane-bound factor mediates specific cleavage of some membrane-bound FtsY molecules between the N and G regions previously believed to be functionally linked to generate a novel membrane-bound isoform composed of only the AN domain.  相似文献   

10.
The prokaryotic signal recognition particle Ffh and its receptor FtsY allow targeting of proteins into or across the plasma membrane. The targeting process is GTP dependent and the two proteins constitute a distinct GTPase family. The receptor FtsY is composed of A and NG domains where the NG's GTPase domain plays a critical role in the targeting process. In this study, we describe two X-ray structures determined independently of each other of the NG domain of FtsY from Mycoplasma mycoides (MmFtsY). The two structures are markedly different in three of the nucleotide-binding segments, GI (P-loop), GII, and GIII, making only one of the structures compatible with nucleotide binding. Interestingly, the two distinct conformations of the nucleotide-binding segments of MmFtsY are similar to the apo- and ADP-loaded forms of certain ATPases. The structure of the extended interface between the A and NG domains of MmFtsY provides new insights into the role of the A domain for phospholipid interaction.  相似文献   

11.
The targeting of many Sec substrates to the membrane-associated translocation pore requires the cytoplasmic signal recognition particle (SRP). In Eukarya and Bacteria it has been shown that membrane docking of the SRP-substrate complex occurs via the universally conserved SRP receptor (Sralpha/beta and FtsY, respectively). While much has been learned about the archaeal SRP in recent years, few studies have examined archaeal Sralpha/FtsY homologs. In the present study the FtsY homolog of Haloferax volcanii was characterized in its native host. Disruption of the sole chromosomal copy of ftsY in H. volcanii was possible only under conditions where either the full-length haloarchaeal FtsY or an amino-terminally truncated version of this protein lacking the A domain, was expressed in trans. Subcellular fractionation analysis of H. volcanii ftsY deletion strains expressing either one of the complementing proteins revealed that in addition to a cytoplasmic pool, both proteins cofractionate with the haloarchaeal cytoplasmic membrane. Moreover, membrane localization of the universally conserved SRP subunit SRP54, the key binding partner of FtsY, was detected in both H. volcanii strains. These analyses suggest that the H. volcanii FtsY homolog plays a crucial role but does not require its A domain for haloarchaeal growth.  相似文献   

12.
The mechanism underlying the interaction of the Escherichia coli signal recognition particle (SRP) receptor FtsY with the cytoplasmic membrane is not fully understood. We investigated this issue by utilizing active (NG+1) and inactive (NG) mutants of FtsY. In solution, the mutants comparably bind and hydrolyze nucleotides and associate with SRP. In contrast, a major difference was observed in the cellular distribution of NG and NG+1. Unlike NG+1, which distributes almost as the wild-type receptor, the inactive NG mutant accumulates on the membrane, together with ribosomes and SRP. The results suggest that NG function is compromised only at a later stage of the targeting pathway and that despite their identical behavior in solution, the membrane-bound NG-SRP complex is less active than NG+1-SRP. This notion is strongly supported by the observation that lipids stimulate the GTPase activity of NG+1-SRP, whereas no stimulation is observed with NG-SRP. In conclusion, we propose that the SRP receptor has two distinct and separable roles in (i) mediating membrane targeting and docking of ribosomes and (ii) promoting their productive release from the docking site.  相似文献   

13.
Recent studies have indicated that FtsY, the signal recognition particle receptor of Escherichia coli, plays a central role in membrane protein biogenesis. For proper function, FtsY must be targeted to the membrane, but its membrane-targeting pathway is unknown. We investigated the relationship between targeting and function of FtsY in vivo, by separating its catalytic domain (NG) from its putative targeting domain (A) by three means: expression of split ftsY, insertion of various spacers between A and NG, and separation of A and NG by in vivo proteolysis. Proteolytic separation of A and NG does not abolish function, whereas separation by long linkers or expression of split ftsY is detrimental. We propose that proteolytic cleavage of FtsY occurs after completion of co-translational targeting and assembly of NG. In contrast, separation by other means may interrupt proper synchronization of co-translational targeting and membrane assembly of NG. The co-translational interaction of FtsY with the membrane was confirmed by in vitro experiments.  相似文献   

14.
The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.  相似文献   

15.
This study indicated that the N-terminus was dispensable for FtsY GTPase activity, and that the N-domain plays an essential role in the GTPase activity of the NG domain. In addition, the S.scoelicolor FtsY was able to restore function in an E. coli mutant. However, its NG domain was unable to play any roles.  相似文献   

16.
The SRP receptor FtsY, which is involved in targeting and translocating membrane protein, is generally composed of the N-terminal domain and the NG domain. Although FtsY was highly homologous in the composition of amino acids and functions among microbes, the different mechanism in the location of FtsYs from different bacteria such as S. coelicolor and E. coli were discovered in this study by laser scanning confocal microscope (LSCM) in vivo and molecular techniques in vitro. The results revealed that the N-terminal domain of S. coelicolor FtsY was indispensable for FtsY’s anchoring membrane, and while the A domain of E. coli FtsY was dispensable. Moreover, the A domain of E. coli FtsY might promote itself to bind the membrane depending on the location images and Western blotting.  相似文献   

17.
The structural basis for the GTP-dependent co-translational targeting complex between the signal recognition particle (SRP) and its receptor is unknown. The complex has been shown to have unusual kinetics of formation, and association in vivo is likely to be dependent on catalysis by the SRP RNA. We have determined conditions for RNA-independent association of the 'NG' GTPase domains of the prokaryotic homologs of the SRP components, Ffh and FtsY, from Thermus aquaticus. Consistent with previous studies of the Escherichia coli proteins, the kinetics of association and dissociation are slow. The T. aquaticus FtsY is sensitive to an endogenous proteolytic activity that cleaves at two sites--the first in a lengthy linker peptide that spans the interface between the N and G domains, and the second near the N-terminus of the N domain of FtsY. Remarkably, this second cleavage occurs only on formation of the Ffh/FtsY complex. The change in protease sensitivity of this region, which is relatively unstructured in the FtsY but not in the Ffh NG domain, implies that it undergoes conformational change on formation of the complex between the two proteins. The N domain, therefore, participates in the interactions that mediate the GTP-dependent formation of the targeting complex.  相似文献   

18.
T Powers  P Walter 《The EMBO journal》1997,16(16):4880-4886
The Ffh-4.5S ribonucleoprotein particle (RNP) and FtsY from Escherichia coli are homologous to essential components of the mammalian signal recognition particle (SRP) and SRP receptor, respectively. The ability of these E. coli components to function in a bona fide co-translational targeting pathway remains unclear. Here we demonstrate that the Ffh-4.5S RNP and FtsY can efficiently replace their mammalian counterparts in targeting nascent secretory proteins to microsomal membranes in vitro. Targeting in the heterologous system requires a hydrophobic signal sequence, utilizes GTP and, moreover, occurs co-translationally. Unlike mammalian SRP, however, the Ffh-4.5S RNP is unable to arrest translational elongation, which results in a narrow time window for the ribosome nascent chain to interact productively with the membrane-bound translocation machinery. The highly negatively charged N-terminal domain of FtsY, which is a conserved feature among prokaryotic SRP receptor homologs, is important for translocation and acts to localize the protein to the membrane. Our data illustrate the extreme functional conservation between prokaryotic and eukaryotic SRP and SRP receptors and suggest that the basic mechanism of co-translational protein targeting is conserved between bacteria and mammals.  相似文献   

19.
Fifty-four homolog(Ffh)and FtsY are the central components of the signal recognitionparticle secretory pathway of bacteria.In this study,the core domain and active sites of FtsY and Ffh fromStreptomyces coelicolor,which are responsible for guanosine triphosphate(GTP)hydrolysis,were identi-fied using site-directed mutagenesis.Mutations were introduced to the conserved GXXGXGK loop of theputative GTP binding site.Mutation of the Lys residue to Gly in both FtsY and Ffh NG domains significantlydecreased the GTPase activity and GTP binding affinity.Furthermore,a structural model of the ternarycomplex of FtsY/Ffh NG domains and the non-hydrolyzable GTP analog guanylyl 5′-(β,γ-methylenediphosphonate)also revealed that each Lys residue in GXXGXGK of FtsY and Ffh provides thepredicted hydrogen bond required for GTP binding.However,in Fts Y not in Ffh,mutation of the first Glyresidue in the GXXGXGK loop disrupted the GTPase activity.In addition,protease-digesting test demon-strated that NG protein with the mutation of Lys residue was decomposed more easily.Western blot analysissuggested that in Streptomyces coelicolor,Fts Y is present in the membrane fraction and Ffh in the cytosolfraction during the mid-log phase of growth.These results indicated that Lys residue in the putative GTPbinding loop was the crucial residue for the GTPase activity of NG domain.  相似文献   

20.
In cotranslational preprotein targeting in Escherichia coli, the signal recognition particle (SRP) binds to the signal peptide emerging from the ribosome and, subsequently, interacts with the signal recognition particle receptor, FtsY, at the plasma membrane. Both FtsY and the protein moiety of the signal recognition particle, Ffh, are GTPases, and GTP is required for the formation of the SRP-FtsY complex. We have studied the binding of GTP/GDP to FtsY as well as the SRP-FtsY complex formation by monitoring the fluorescence of tryptophan 343 in the I box of mutant FtsY. Thermodynamic and kinetic parameters of the FtsY complexes with GDP, GTP, and signal recognition particle are reported. Upon SRP-FtsY complex formation in the presence of GTP, the fluorescence of tryptophan 343 increased by 50 % and was blue-shifted by 10 nm. We conclude that GTP-dependent SRP-FtsY complex formation leads to an extensive conformational change in the I box insertion in the effector region of FtsY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号