共查询到20条相似文献,搜索用时 0 毫秒
1.
GIT1 is an adaptor protein, which links signaling proteins to focal adhesion, thereby regulating cytoskeletal reorganization. Platelets undergo dynamic cytoskeletal reorganization during platelet activation, for which a large number of adaptor proteins are required. However, there has been no report of GIT1 in platelets. We found that GIT1 was abundantly expressed in platelets and underwent tyrosine phosphorylation downstream of integrin α IIbβ 3, which was inhibited by the Src kinase inhibitor PP2. Furthermore, GIT1 constitutively associated with βPIX, a guanine nucleotide exchange factor (GEF) for Rac. The GIT1/βPIX complex associated with α IIbβ 3, concomitantly with GIT1 tyrosine phosphorylation. Moreover, both GIT1 and α IIbβ 3 rapidly translocated to the cytoskeletal fraction during platelet aggregation, which was not observed in the absence of aggregation. These results suggest that tyrosine phosphorylation of GIT1 by Src kinases may regulate cytoskeletal reorganization downstream of α IIbβ 3 by bringing the Rac GEF βPIX to the vicinity of the integrin. 相似文献
2.
The novel RGD mimetics with phthalimidine central fragment were synthesized with the use of 4-piperidine-4-yl-butyric, 4-piperidine-4-yl-benzoic, 4-piperazine-4-yl-benzoic and 1,2,3,4-tetrahydroisoquinoline-7-carboxylic acids as surrogates of Arg motif. The synthesized compounds potently inhibited platelet aggregation in vitro and blocked FITC-Fg binding to α(IIb)β(3) integrin in a suspension of washed human platelets. The key α(IIb)β(3) protein-ligand interactions were determined in docking experiments. 相似文献
3.
A hallmark of neurogenesis in vertebrate is the apical-basal fluctuation of radial glia nuclei. Such a phenomenon, called INM, has been known for decades and is closely associated with mitosis but still puzzles scientists. An impressive step in the molecular understanding of INM has recently been achieved by Tsai and coworkers. Using RNA interference associated with time-lapse imaging, these authors demonstrated a dual motor system that can push/pull the nuclei accordingly with the cell cycle stages. 相似文献
4.
Previous studies have demonstrated that passage in monolayer detrimentally affects the response of articular chondrocytes to the application of dynamic compression. Transforming growth factor beta (TGFbeta) is known to regulate metabolic processes in articular cartilage and can enhance the re-expression of a chondrocytic phenotype following monolayer expansion. The current study tests the hypothesis that TGFbeta also modulates the response of monolayer-expanded human chondrocytes to the application of dynamic compression, via an integrin-mediated mechanotransduction process. The data presented demonstrate that TGFbeta3 enhanced 35SO4 and [3H]thymidine incorporation and inhibited nitrite release after 48 h of culture when compared to unsupplemented constructs. Dynamic compression also enhanced 35SO4 and [3H]thymidine incorporation and inhibited nitrite release in the presence of TGFbeta3. By contrast, dynamic compression did not alter these parameters in the absence of the growth factor. The addition of the peptide, GRGDSP, which acts as a competitive ligand for the alpha5beta1 integrin, reversed the compression-induced stimulation of 35SO4 incorporation, [3H]thymidine incorporation, and suppression of nitrite release. No effect was observed when the control peptide, GRADSP, was used. The current data clearly demonstrate that the dynamic compression-induced changes observed in cell metabolism for human monolayer-expanded chondrocytes were dependent on the presence of TGFbeta3 and are integrin-mediated. 相似文献
5.
Excessive generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of many diseases, including
atherosclerosis, hypertension, and vascular complications of diabetes. However, the precise mechanisms by which ROS contribute
to the development of these diseases are not fully characterized. Hydrogen peroxide (H 2O 2), a ROS, has been shown to activate several signaling protein kinases, such as extracellular signal-regulated kinase (ERK)1/2
and protein kinase B (PKB) in different cell types, notably in vascular smooth muscle cells. Because these pathways regulate
cellular mitogenesis, migration, proliferation, survival, and death responses, their aberrant activtion has been suggested
to be a potential mechanism of ROS-induced pathologies. The upstream elements responsible for H 2O 2-induced ERK1/2 and PKB activation remain poorly characterized, but a potential role of receptor and nonreceptor protein tyrosine
kinases (PTKs) as triggers that initiate such events has been postulated. Therefore, the aim of this review is to highlight
the involvement of receptor and nonreceptor PTKs in modulating H 2O 2-induced ERK1/2 and PKB signaling. 相似文献
6.
ABSTRACT Previously, we reported that endometrial stromal (ES) and endometrial epithelial (EE) cells did not attach to tenascin C, indicating the absence of active integrin α 9β 1 on the surface of mouse ES and EE cells. However, that study used recombinant tenascin C without fibronectin (FN) type III repeats interacting with integrin heterodimers. Therefore, we re-evaluated the presence of integrin α 9β 1 actively functioning on the surface of mouse ES and EE cells using full-length native tenascin C with FN type III repeats. The functionality of integrin α 9β 1 was confirmed using attachment and antibody inhibition assays. Both mouse ES and EE cells showed significantly increased adhesion to native tenascin C, and functional blocking of integrin α 9β 1 significantly inhibited adhesion to native tenascin C. These results demonstrate that the integrin α 9 and β 1 subunits function as active heterodimers on the plasma membrane of mouse ES and EE cells, respectively. 相似文献
7.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors. 相似文献
8.
Focal adhesion kinase (FAK) is activated in human platelets downstream of integrins, e.g. α IIbβ 3, and other adhesion receptors e.g. GPVI. Mice in which platelets lack FAK have been shown to exhibit extended bleeding times and their platelets have been shown to display decreased spreading on fibrinogen-coated surfaces. Recently, a novel FAK inhibitor (PF-573,228) has become available, its selectivity for FAK shown in vitro and in cell lines. We determined the effect of this inhibitor on platelet function and signaling pathways. Like murine platelets lacking FAK, we found that PF-573,228 was effective at blocking human platelet spreading on fibrinogen-coated surfaces but did not affect the initial adhesion. We also found a reduced spreading on CRP-coated surfaces. Further analysis of the morphology of platelets adhered to these surfaces showed the defect in spreading occurred at the transition from filopodia to lamellipodia. Similar to that seen with murine neutrophils lacking FAK, we also observed an unexpected defect in intracellular calcium release in human platelets pre-treated with PF-573,228 which correlated with impaired dense granule secretion and aggregation. The aggregation defect could be partially rescued by addition of ADP, normally secreted from dense granules, suggesting that PF-573,228 has effects on FAK downstream of α IIbβ 3 and elsewhere. Our data show that PF-573,228 is a useful tool for analysis of FAK function in cells and reveal that in human platelets FAK may regulate a rise in cell calcium and platelet spreading. 相似文献
9.
A homology model of the human alpha7 nicotinic receptor was constructed based on the acetylcholine-binding protein crystal structure. Subsequently, the three-dimensional structure of the complex between the alpha7 nicotinic receptor and the 42-amino acid beta-amyloid peptide was obtained for the first time with the aid of the ESCHER program, a well-known method for protein-protein docking. The final complex showed that the most important interactions occur between the residues V12-K28 from the peptide and the loop C of the receptor. The model agrees with many experimental data, and may be used as a base model for further detailed studies in order to gain insight into the binding and dynamics of the complex at molecular level and their correlation with the memory impairments characteristic of the Alzheimer's disease. 相似文献
10.
BackgroundGinseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug. MethodsThe cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice. ResultsAD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G 0/G 1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index. Conclusions and general significanceThese data support development of AD-1 as a potential agent for lung cancer therapy. 相似文献
11.
Induction of apoptotic cell death is emerging as a promising strategy for prevention and treatment of obesity because removing of adipocytes via apoptosis may result in reducing body fat and a long-lasting maintenance of weight loss. However, the mechanisms controlling adipocyte apoptosis are unknown and even the ability of adipocytes to undergo apoptosis has not been conclusively demonstrated. We have shown previously that the specific Ca 2+ signal, sustained increase in intracellular Ca 2+, triggers apoptotic cell death via activation of Ca 2+-dependent proteases and that the apoptosis-inducing effect of the hormone 1,25-dihydroxyvitamin D 3 (1,25(OH) 2D 3) is mediated through Ca 2+ signaling. Here, we report that 1,25(OH) 2D 3 induces apoptosis in mature mouse 3T3-L1 adipocytes via activation of Ca 2+-dependent calpain and Ca 2+/calpain-dependent caspase-12. Treatment of adipocytes with 1,25(OH) 2D 3 induced, in concentration- and time-dependent fashion, a sustained increase in the basal level of intracellular Ca 2+. The increase in Ca 2+ was associated with induction of apoptosis and activation of μ-calpain and caspase-12. Our results demonstrate that Ca 2+-mediated apoptosis can be induced in mature adipocytes and that the apoptotic molecular targets activated by 1,25(OH) 2D 3 in these cells are Ca 2+-dependent calpain and caspase-12. These findings provide rationale for evaluating the role of vitamin D in prevention and treatment of obesity. 相似文献
12.
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid. 相似文献
13.
Salmosin, a disintegrin purified from a Korean snake (Agkistrodon halys brevicaudus) venom, interacts with integrin alpha(v)beta(3) and inhibits the proliferation of bovine capillary endothelial (BCE) cells induced by basic fibroblast growth factor (bFGF). We investigated salmosin's mechanism of inhibition of BCE cell proliferation by examining changes in the cytoskeleton and activation of integrin-mediated signaling molecules. Salmosin disassembled cortical actins at focal adhesions and induced cells to be rounded and detached, but it did not alter microtubule structures in the early stage of cells being rounded. Immunolocalization of paxillin also demonstrated that focal adhesions were disassembled by salmosin. In salmosin-treated BCE cells, focal adhesion kinase (FAK) was dephosphorylated and expression of paxillin and p130(CAS) was decreased, but PI3 kinase, ILK, and beta-catenin were not expressed in decreased amounts or modified, suggesting that salmosin inactivated FAK-dependent integrin signaling pathways. While BCE cells proliferated normally on plates coated with salmosin, cells treated with salmosin eventually underwent apoptosis. These observations strongly suggest that salmosin disorganizes focal contacts to detach cells by competing with the extracellular matrix (ECM) for direct binding to integrin alpha(v)beta(3) on the cell surface, eventually leading to apoptosis. 相似文献
14.
Cytoplasmic Ca2+ signals are highly regulated by various ion transporters, including the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), which functions as a Ca2+ release channel on the endoplasmic reticulum membrane. Crystal structures of the two N-terminal regulatory regions from type 1 IP(3)R have been reported; those of the IP(3)-binding core (IP(3)R(CORE)) with bound IP(3), and the suppressor domain. This study examines the structural effects of ligand binding on an IP(3)R construct, designated IP(3)R(N), that contains both the IP(3)-binding core and the suppressor domain. Our circular dichroism results reveal that the IP(3)-bound and IP(3)-free states have similar secondary structure content, consistent with preservation of the overall fold within the individual domains. Thermal denaturation data show that, while IP(3) has a large effect on the stability of IP(3)R(CORE), it has little effect on IP(3)R(N), indicating that the suppressor domain is critical to the stability of IP(3)R(N). The NMR data for IP(3)R(N) provide evidence for chemical exchange, which may be due to protein conformational dynamics in both apo and IP(3)-bound states: a conclusion supported by the small-angle X-ray scattering data. Further, the scattering data show that IP(3)R(N) undergoes a change in average conformation in response to IP(3) binding and the presence of Ca2+ in the solution. Taken together, these data lead us to propose that there are two flexible linkers in the N-terminal region of IP(3)R that join stably folded domains and give rise to an equilibrium mixture of conformational sub-states containing compact and more extended structures. IP(3) binding drives the conformational equilibrium toward more compact structures, while the presence of Ca2+ drives it to a more extended set. 相似文献
15.
The stimulation of the alpha(1)-adrenergic receptor with phenylephrine results in the significant extrusion of Mg(2+) from the rat heart and cardiomyocytes. Phenylephrine-induced Mg(2+) extrusion is prevented by the removal of extracellular Ca(2+) or by the presence of Ca(2+)-channel blockers such as verapamil, nifedipine, or (+)BAY-K8644. Mg(2+) extrusion is almost completely inhibited by PD98059 (a MAP kinase inhibitor). The simultaneous addition of 5mM Ca(2+) and phenylephrine increases the extrusion of Mg(2+) from perfused hearts and cardiomyocytes. This Mg(2+) extrusion is inhibited by more than 90% when the hearts are preincubated with PD98059. ERKs are activated by perfusion with either phenylephrine or 5mM Ca(2+). This ERK activation is inhibited by PD98059. Overall, these results suggest that stimulating the cardiac alpha(1)-adrenergic receptor by phenylephrine causes the extrusion of Mg(2+) via the Ca(2+)-activated, Na(+)-dependent transport pathway, and the ERKs assists in Mg(2+) transport in the heart. 相似文献
16.
We have already demonstrated that interferon alfa-2b (IFN-alpha2b) induces apoptosis in isolated hepatocytes from preneoplastic rat livers via the secretion of transforming growth factor beta(1) (TGF-beta(1)), and this process is accompanied by caspase-3 activation. The aim of this study was to further investigate the mechanism of this activation. Isolated hepatocytes from preneoplastic livers induced DNA fragmentation in response to IFN-alpha2b, which was completely blocked when anti-TGF-beta(1) was added to the culture media. IFN-alpha2b mediated radical oxygen species (ROS) production that preceded the loss of mitochondrial transmembrane potential (DeltaPsi), release of cytochrome c, and activation of caspase-3. Bax levels increased in a time-dependent fashion, and Bcl-x(L) was down-regulated in the early hours of IFN-alpha2b treatment. The delayed translocation of Bid into the mitochondria was in concordance with late caspase-8 activation. In conclusion, endogenous TGF-beta(1) secreted under IFN-alpha2b stimulus seems to induce cytochrome c release through a mechanism related to Bcl-2 family members and loss of mitochondrial DeltaPsi. Bax protein could be responsible of the release of cytochrome c during the initial hours of IFN-alpha2b-induced apoptosis via TGF-beta(1). Activated Bid by caspases could amplificate the mitochondrial events, enhancing the release of cytochrome c. 相似文献
17.
Extracellular ATP acts as a signal that regulates a variety of cellular processes via binding to P2 purinergic receptors (P2 receptors). We herein investigated the effects and signaling pathways of ATP on glucose uptake in C(2)C(12) skeletal muscle cells. ATP as well as P2 receptor agonists (ATP-gamma S) stimulated the rate of glucose uptake, while P2 receptor antagonists (suramin) inhibited the stimulatory effect of ATP, indicating that P2 receptors are involved. This ATP-stimulated glucose transport was blocked by specific inhibitors of Gi protein (pertusiss toxin), phospholipase C (U73122), protein kinase C (GF109203X), and phosphatidylinositol (PI) 3-kinase (LY294002). ATP stimulated PI 3-kinase activity and P2 receptor antagonists blocked this activation. In C(2)C(12) myotubes expressing glucose transporter GLUT4, ATP increased basal and insulin-stimulated glucose transport. Finally, ATP facilitated translocation of GLUT1 and GLUT4 into plasma membrane. These results together suggest that cells respond to extracellular ATP to increase glucose transport through P2 receptors. 相似文献
18.
BackgroundAn iron-overloaded state has been reported to be associated with insulin resistance. On the other hand, conditions such as classical hemochromatosis (where iron overload occurs primarily in the liver) have been reported to be associated with increased insulin sensitivity. The reasons for these contradictory findings are unclear. In this context, the effects of increased intracellular iron per se on insulin signaling in hepatocytes are not known.MethodsMouse primary hepatocytes were loaded with iron in vitro by incubation with ferric ammonium citrate (FAC). Intracellular events related to insulin signaling, as well as changes in gene expression and hepatocyte glucose production (HGP), were studied in the presence and absence of insulin and/or forskolin (a glucagon mimetic).ResultsIn vitro iron-loading of hepatocytes resulted in phosphorylation-mediated activation of Akt and AMP-activated protein kinase. This was associated with decreased basal and forskolin-stimulated HGP. Iron attenuated forskolin-mediated induction of the key gluconeogenic enzyme, glucose-6-phosphatase. It also attenuated activation of the Akt pathway in response to insulin, which was associated with decreased protein levels of insulin receptor substrates 1 and 2, constituting insulin resistance.ConclusionsIncreased intracellular iron has dual effects on insulin sensitivity in hepatocytes. It increased basal activation of the Akt pathway, but decreased activation of this pathway in response to insulin.General significanceThese findings may help explain why both insulin resistance and increased sensitivity have been observed in iron-overloaded states. They are of relevance to a variety of disease conditions characterized by hepatic iron overload and increased risk of diabetes. 相似文献
19.
Chronic inflammation promotes tumor development and progression, and Toll-like receptors (TLRs) may play an important role in this process. In this study, we found that human prostate epithelial PC3 cells constitutively express TLR4 in mRNA and protein level. lipopolysaccharide (LPS) promotes the expression and secretion of immunosuppressive cytokine TGFβ 1 and proangiogenic factor VEGF in human prostate epithelial PC3 cells. We further elucidated that functionally activation of TLR4 is essential for the increased VEGF and TGFβ 1 mRNA expression in the cells. In addition, after LPS stimulation, the increased expression of NF- KB p65 protein was also detected in human PC3 cells. Our results demonstrate that TLR4 expressed on human PC3 cells is functionally active, and may play important roles in promoting prostate cancer immune escape, survival, progression, and metastasis by inducing immunosuppressive and proangiogenic cytokines. 相似文献
20.
Objectives: Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to G q/11 proteins. Methods: We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP). Results: FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of Giα1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling. Conclusion: These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane. 相似文献
|