首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano‐systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. Chirality 27:613–618, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Isothermal titration calorimetry (ITC) is shown to be a sensitive reporter of bile salt micellization and chiral recognition. Detailed ITC characterization of bile micelle formation as well as the chiral recognition capabilities of sodium cholate (NaC), deoxycholate (NaDC), and taurodeoxycholate (NaTDC) micelle systems are reported. The ΔHdemic of these bile salt micelle systems is directly observable and is strongly temperature‐dependent, allowing also for the determination of ΔCpdemic. Using the pseudo‐phase separation model, ΔGdemic and TΔSdemic were also calculated. Chirally selective guest–host binding of model racemic compounds 1,1’‐bi‐2‐napthol (BN) and 1,1’‐binaphthyl‐2,2’‐diylhydrogenphosphate (BNDHP) to bile salt micelles was then investigated. The S‐isomer was shown to bind more tightly to the bile salt micelles in all cases. A model was developed that allows for the quantitative determination of the enthalpic difference in binding affinity that corresponds to chiral selectivity, which is on the order of 1 kJ mol‐1. Chirality 28:290–298, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The drug chirality is attracting increasing attention because of different biological activities, metabolic pathways, and toxicities of chiral enantiomers. The chiral separation has been a great challenge. Optimized high‐performance liquid chromatography (HPLC) methods based on vancomycin chiral stationary phase (CSP) were developed for the enantioseparation of propranolol, atenolol, metoprolol, venlafaxine, fluoxetine, and amlodipine. The retention and enantioseparation properties of these analytes were investigated in the variety of mobile phase additives, flow rate, and column temperature. As a result, the optimal chromatographic condition was achieved using methanol as a main mobile phase with triethylamine (TEA) and glacial acetic acid (HOAc) added as modifiers in a volume ratio of 0.01% at a flow rate of 0.3 mL/minute and at a column temperature of 5°C. The thermodynamic parameters (eg, ΔH, ΔΔH, and ΔΔS) from linear van 't Hoff plots revealed that the retention of investigated pharmaceuticals on vancomycin CSP was an exothermic process. The nonlinear behavior of lnk′ against 1/T for propranolol, atenolol, and metoprolol suggested the presence of multiple binding mechanisms for these analytes on CSP with variation of temperature. The simulated interaction processes between vancomycin and pharmaceutical enantiomers using molecular docking technique and binding energy calculations indicated that the calculated magnitudes of steady combination energy (ΔG) coincided with experimental elution order for most of these enantiomers.  相似文献   

4.
Isothermal titration calorimetry (ITC) is one of the most robust label- and immobilization-free techniques used to measure protein – small molecule interactions in drug design for the simultaneous determination of the binding affinity (ΔG) and the enthalpy (ΔH), both of which are important parameters for structure-thermodynamics correlations. It is important to evaluate the precision of the method and of various ITC instrument models by performing a single well-characterized reaction. The binding between carbonic anhydrase II and acetazolamide was measured by four ITC instruments – PEAQ-ITC, iTC200, VP-ITC, and MCS-ITC and the standard deviation of ΔG and ΔH was determined. Furthermore, the limit of an approach to reduce the protein concentration was studied for a high-affinity reaction (Kd = 0.3 nM), too tight to be measured by direct (non-displacement) ITC. Chemical validation of the enthalpy measurements is discussed.  相似文献   

5.
Ibuprofen, used for the treatment of acute and chronic pain, osteoarthritis, rheumatoid arthritis, and related conditions has ample affinity to globular proteins. Here we have explored this fundamental study pertaining to the interaction of ibuprofen with human hemoglobin (HHb), using multispectroscopic, calorimetric, and molecular modeling techniques to gain insights into molecular aspects of binding mechanism. Ibuprofen-induced graded decrease in absorption spectra indicates protein disruption along with sedimentation of HHb particle. Red shifting of absorption peak at 195 nm indicates alteration in the secondary structure of HHb upon interaction with ibuprofen. Flouremetric and isothermal titration calorimetric (ITC) studies suggested one binding site in HHb for ibuprofen at 298.15 K. However, with increase in temperature, ITC revealed increasing number of binding sites. The negative values of Gibbs energy change (ΔG0) and enthalpy change (ΔH0) along with positive value of entropy change (ΔS0) strongly suggest that it is entropy-driven spontaneous exothermic reaction. Moreover, hydrophobic interaction, hydrogen bonding, and ππ interaction play major role in this binding process as evidenced from ANS (8-anilino-1-napthalenesulphonic acid), sucrose binding, and molecular modeling studies. The interaction impacts on structural integrity and functional aspects of HHb as confirmed by CD spectroscopy, increased free iron release, increased rate of co-oxidation and decreased rate of esterase activity. These findings suggest us to conclude that ibuprofen upon interaction perturbs both structural and functional aspects of HHb.  相似文献   

6.
Cytosolic phospholipase A2 alpha (cPLA2α, type IVA phospholipase) acts at the membrane surface to release free arachidonic acid, which is metabolized into inflammatory mediators, including leukotrienes and prostaglandins. Thus, specific cPLA2α inhibitors are predicted to have antiinflammatory properties. However, a key criterion in the identification and development of such inhibitors is to distinguish between compounds that bind stoichiometrically to cPLA2α and nonspecific membrane perturbants. In the current study, we developed a method employing isothermal titration calorimetry (ITC) to characterize the binding of several distinct classes of cPLA2α inhibitors. Thermodynamic parameters and the binding constants were obtained following titration of the inhibitor to the protein at 30 °C and pH 7.4. The compounds tested bound cPLA2α with a 1:1 stoichiometry, and the dissociation constant Kd of the inhibitors calculated from the ITC experiments correlated well with the IC50 values obtained from enzymatic assays. Interestingly, binding was observed only in the presence of a micellar surface, even for soluble compounds. The site of binding of these inhibitors within cPLA2α was analyzed by testing for binding in the presence of methyl arachidonyl fluorophosphonate (MAFP), an irreversible active site inhibitor of cPLA2α. Lack of binding of inhibitors in the presence of MAFP suggested that the compounds tested bound specifically at or near the active site of the protein. Furthermore, the effect of various detergents on the binding of certain inhibitors to cPLA2α was also tested. The results are discussed with reference to thermodynamic parameters such as changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG). The data obtained from these studies provide not only structure-activity relationships for compounds but also important information regarding mechanism of binding. This is the first example of ITC used for studying inhibitors of enzymes with interfacial kinetics.  相似文献   

7.
BackgroundWhile a number of reports appear on ionic liquids–proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented.MethodsIsothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry.Scope of reviewIonic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL–protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique.Major conclusions and general significanceNet stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs–Helmholtz equation (ΔG = ΔH  TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL–protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

8.
Linezolid, one of the reserve antibiotic of oxazolidinone class has wide range of antimicrobial activity. Here we have conducted a fundamental study concerning the dynamics of its interaction with bovine serum albumin (BSA), and the post binding modification of the later by employing different spectroscopic (absorption, fluorescence and circular dichroism (CD) spectroscopy) and molecular docking tools. Gradual quenching of the tryptophan (Trp) fluorescence upon addition of linezolid to BSA confirms their interaction. Analysis of fluorescence quenching at different temperature indicates that the interaction is made by static complex formation and the BSA has one binding site for the drug. The negative Gibbs energy change (ΔG0), and positive values of enthalpy change (ΔH0) and entropy change (ΔS0) strongly suggest that it is an entropy driven spontaneous and endothermic reaction. The reaction involves hydrophobic pocket of the protein, which is further stabilized by hydrogen bonding and electrostatic interactions as evidenced from 8-anilino-1-napthalene sulfonic acid, sucrose and NaCl binding studies. These findings also support the molecular docking study using AutoDock 4.2. The influence of this interaction on the secondary structure of the protein is negligible as evidenced by CD spectroscopy. So, from these findings, we conclude that linezolid interacts with BSA in 1:1 ratio through hydrophobic, hydrogen bonding and ionic interactions, and this may not affect the secondary structure of the protein.  相似文献   

9.
So far, no detailed view has been expressed regarding the interactions between vancomycin and racemic compounds including mandelic acid. In the current study, a chiral stationary phase was prepared by using 3-aminopropyltriethoxysilane and succinic anhydride to graft carboxylated silica microspheres and subsequently by activating the carboxylic acid group for vancomycin immobilization. Characterization by elemental analysis, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance, and thermogravimetric analysis demonstrated effective functionalization of the silica surface. R and S enantiomers of mandelic acid were separated by the synthetic vancomycin column. Finally, the interaction between vancomycin and R/S mandelic acid enantiomers was simulated by Auto-dock Vina. The binding energies of interactions between R and S enantiomers and vancomycin chiral stationary phase were different. In the most probable interaction, the difference in mandelic acid binding energy was approximately 0.2 kcal/mol. In addition, circular dichroism spectra of vancomycin interacting with R and S enantiomers showed different patterns. Therefore, R and S mandelic acid enantiomers may occupy various binding pockets and interact with different vancomycin functions. These observations emphasized the different retention of R and S mandelic acid enantiomers in vancomycin chiral column.  相似文献   

10.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   

11.
Stereoselective high‐performance liquid chromatographic separations of eight sterically constrained cyclic β‐amino acid enantiomer pairs were carried out using the newly developed Cinchona alkaloid‐based zwitterionic chiral stationary phases Chiralpak ZWIX(+) and ZWIX(?). The effects of the mobile phase composition, the nature and concentrations of the acid and base additives, the counterions and temperature on the separations were investigated. The changes in standard enthalpy, Δ(ΔH°), entropy, Δ(ΔS°), and free energy, Δ(ΔG°), were calculated from the linear van't Hoff plots derived from the ln α vs. 1/T curves in the studied temperature range (10–50°C). The values of the thermodynamic parameters depended on the nature of the selectors and the structures of the analytes. Unusual temperature behavior was observed on the ZWIX(?) column: decreased retention times were accompanied by increased separation factors with increasing temperature. On the ZWIX(+) column only enthalpically, whereas on the ZWIX(?) column both enthalpically and entropically driven separations were observed. The elution sequence was determined in all cases and was observed to be the opposite on ZWIX(+) and on ZWIX(?). Chirality 27:563570, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Soluble epoxide hydrolase (sEH) is a promising new target for treating hypertension and inflammation. Considerable efforts have been devoted to develop novel inhibitors. In this study, the binding modes and interaction mechanisms of a series of adamantyl-based 1,3-disubstituted urea inhibitors were investigated by molecular docking, molecular dynamics simulations, binding free energy calculations, and binding energy decomposition analysis. Based on binding affinity, the most favorable binding mode was determined for each inhibitor. The calculation results indicate that the total binding free energy (ΔGTOT, the sum of enthalpy ΔGMM-GB/SA, and entropy ?TΔS) presents a good correlation with the experimental inhibitory activity (IC50, r2?=?.99). The van der Waals energy contributes most to the total binding free energy (ΔGTOT). A detailed discussion on the interactions between inhibitors and those residues located in the active pocket is made based on hydrogen bond and binding modes analysis. According to binding energy decomposition, the residues Asp333 and Trp334 contribute the most to binding free energy in all systems. Furthermore, Hip523 plays a major role in determining this class of inhibitor-binding orientations. Combined with the results of hydrogen bond analysis and binding free energy, we believe that the conserved hydrogen bonds play a role only in anchoring the inhibitors to the exact site for binding and the number of hydrogen bonds may not directly relate to the binding free energy. The results we obtained will provide valuable information for the design of high potency sEH inhibitors.  相似文献   

13.
The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high‐performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n‐hexane and iso‐propanol (IPA) (80/20 v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R‐clausenamidone and S‐clausenamidone and R‐neoclausenamidone and S‐ neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15 K. Furthermore, docking modeling showed that the hydrogen bonds and π‐π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.  相似文献   

14.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Quan Zhang  Cui Wang 《Chirality》2013,25(11):787-792
The existence of enantiomer‐enriched mixtures of chiral pesticides in the environment is overwhelmingly positive. However, interactions between enantiomers have not been considered so far in risk assessments. Here, we chose three organophosphorus pesticides as representative chiral pesticides to investigate the possible interaction mode between each pair of enantiomers both in in vivo and in vitro. Data show that the enantiomers of methamidophos and profenofos have a simple additive effect, <zaq;1> whereas fensulfothion acts as an antagonist in AChE‐inhibition model. In contrast, enantiomers of methamidophos and fensulfothion had an additive effect in an acute toxicity test against Daphnia magna. A synergistic effect was observed in the joint toxicity of the profenofos enantiomers. The ability for enantiospecific biodegradation in the in vivo model contributed to the different interaction observed between the in vitro and in vivo models. Moreover, binding affinities were suspected as another reason for the different mode of action of mixture enantiomers. Our study recommends using a joint research model to treat chiral compounds in the real environment. Chirality 25:787–792, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
BackgroundIsothermal titration calorimetry (ITC) is a biophysical technique widely used to study molecular interactions in biological and non-biological systems. It can provide important information about molecular interactions (such as binding constant, number of binding sites, free energy, enthalpy, and entropy) simply by measuring the heat absorbed or released during an interaction between two liquid solutions.Scope of the reviewIn this review, we present an overview of ITC applications in food science, with particular focus on understanding the fate of lipids within the human gastrointestinal tract. In this area, ITC can be used to study micellization of bile salts, inclusion complex formation, the interaction of surface-active molecules with proteins, carbohydrates and lipids, and the interactions of lipid droplets.Major conclusionsITC is an extremely powerful tool for measuring molecular interactions in food systems, and can provide valuable information about many types of interactions involving food components such as proteins, carbohydrates, lipids, surfactants, and minerals. For systems at equilibrium, ITC can provide fundamental thermodynamic parameters that can be used to establish the physiochemical origin of molecular interactions.General significanceIt is expected that ITC will continue to be utilized as a means of providing fundamental information about complex materials such as those found in foods. This knowledge may be used to create functional foods designed to behave in the gastrointestinal tract in a manner that will improve human health and well-being. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

17.
In the present study 21 different chiral aminotetralins were used to investigate the mechanism behind their enantiomeric resolution (Rs) on a commercially available high-performance liquid chromatography (HPLC) cellulose tris-3,5-dimethylcarbamate stationary phase. The differences in the chemical structures of the aminotetralins used were never directly located on the chiral carbon. Their chromatographic behavior was studied for two eluent compositions at six different temperatures. Hydrogen bonding and π? π interactions are two possible solute–chiral stationary phase (CSP) interactions. Differences between the enantiomers in their spatial arrangement of positions involved in solute–CSP interactions were the major forces behind enantiomeric separation. Lowering the temperature increased the Rs for the aminotetralins having π-electrons not directly bonded to that part of the molecule where the hydrogen bonding with the CSP is located. Primary amines and secondary amines, with a sufficiently short N-alkyl substituent, showed a decrease of Rs with lower temperatures, all other aminotetralins yielding an increase of Rs with lower temperatures. © 1992 Wiley-Liss, Inc.  相似文献   

18.
The interactions of imidazolium bashed ionic liquid-type cationic gemini surfactant ([C12-4-C12im]Br2) with HSA were studied by fluorescence, time-resolved fluorescence, UV-visible, circular dichroism, molecular docking and molecular dynamic simulation methods. The results showed that the [C12-4-C12im]Br2 quenched the fluorescence of HSA through dynamic quenching mechanism as confirmed by time-resolved spectroscopy. The Stern–Volmer quenching constant (Ksv) and relevant thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy change (ΔG) and entropy change (ΔS) for interaction system were calculated at different temperatures. The results revealed that hydrophobic forces played a major role in the interactions process. The results of synchronous fluorescence, UV-visible and CD spectra demonstrated that the binding of [C12-4-C12im]Br2 with HSA induces conformational changes in HSA. Inquisitively, the molecular dynamics study contribute towards understanding the effect of binding of [C12-4-C12im]Br2 on HSA to interpret the conformational change in HSA upon binding in aqueous solution. Moreover, the molecular modelling results show the possible binding sites in the interaction system.  相似文献   

19.
Copper(II) complexes of N2-octyl-(S)-phenylalaninamide (Noc-Phe-NH2), N2-dodecyl-(S)-phenylalaninamide (Ndo-Phe-NH2), and N2-octyl-(S)-norleucinamide (Noc-NLeu-NH2), dynamically adsorbed on a reversed-phase C18 column, were able to perform the direct enantiomeric separation of unmodified amino acids, amino acid amides and esters, hydroxy acids, and dipeptides by elution with aqueous or mixed aqueous-organic solutions containing copper(II) sulphate or acetate. The role played by several parameters in the separation procedure was examined with the copper(II) complex of Noc-Phe-NH2 [concentration of the copper(II) ion in the eluent, pH and eluent polarity, amount of adsorbed selector]. The separation was shown to occur entirely on the stationary phase. The mechanism of chiral discrimination is discussed in terms of the chromatographic parameters and of the structure of the copper(II) complexes in solution and in the solid state. The chiral stationary phase maintained its separation ability for about 3 months. However, the column could be easily restored by recovering the selector with methanol and repeating the loading procedure. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Metal–organic frameworks (MOFs) are excellent porous materials with nanoscale cavities and high surface areas, which make them promising as novel adsorbents in solid‐phase extraction (SPE). In this article we report a new application of the chiral MOF [Zn2(D‐Cam)2(4,4′‐bpy)]n in SPE used for the measurement of the enantiomeric excess (ee) of (±)‐1,1′‐bi‐2‐naphthol. Several important experimental parameters that may influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity (R2 > 0.999) was found between the ee value and the reciprocal of the peak areas. When compared with the actual ee measured using chiral HPLC, the SPE‐based assay also showed good accuracy and precision. The results showed that SPE based on chiral MOFs as adsorbents is a simple and effective method for the determination of the ee values of chiral compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号