共查询到20条相似文献,搜索用时 0 毫秒
1.
Sergio Abbate France Lebon Giovanna Longhi Marco Passarello Vincenzo Turco Liveri 《Chirality》2011,23(10):910-915
The electronic circular dichroism spectra of achiral product “Lumogen F Red” (ROT‐300) in four different chiral solvents are recorded at different temperatures. DFT calculations allow to identify two enantiomeric conformers for ROT‐300. In vacuo they are equally populated; in chiral solvents one enantiomer prevails. Thermodynamic quantities involved in the chiral preference are derived. Chirality, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
2.
The electronic circular dichroism (ECD) spectrum of the recently synthesized [16]helicene and a derivative comprising two triisopropylsilyloxy protection groups was computed by means of the very efficient simplified time‐dependent density functional theory (sTD‐DFT) approach. Different from many previous ECD studies of helicenes, nonequilibrium structure effects were accounted for by computing ECD spectra on \"snapshots\" obtained from a molecular dynamics (MD) simulation including solvent molecules. The trajectories are based on a molecule specific classical potential as obtained from the recently developed quantum chemically derived force field (QMDFF) scheme. The reduced computational cost in the MD simulation due to the use of the QMDFF (compared to ab‐initio MD) as well as the sTD‐DFT approach make realistic spectral simulations feasible for these compounds that comprise more than 100 atoms. While the ECD spectra of [16]helicene and its derivative computed vertically on the respective gas phase, equilibrium geometries show noticeable differences, these are “washed” out when nonequilibrium structures are taken into account. The computed spectra with two recommended density functionals (ωB97X and BHLYP) and extended basis sets compare very well with the experimental one. In addition we provide an estimate for the missing absolute intensities of the latter. The approach presented here could also be used in future studies to capture nonequilibrium effects, but also to systematically average ECD spectra over different conformations in more flexible molecules. Chirality 28:365–369, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
3.
Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li+, Na+, K+, Rb+, Ag+, and Et4N+) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178–192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time‐dependent Density Functional Theory (TDDFT) simulations did not allow band‐to‐band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420–428, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
4.
Time‐dependent density functional theory (TD‐DFT) has been employed to simulate the circular dichroism (CD) spectra of bipyridyl ruthenium(II) complexes as well as zinc(II) and copper(II) complexes containing tris(2‐pyridylmethyl)amine (TPA) derivatives. A qualitative model is used to account for the mechanism by which the bis‐ and tris‐bipyridine complexes (or analogous systems) exhibit exciton CD. The model is further used to predict the sign of the exciton CD bands. The predictions are in agreement with experiment and DFT calculations. A comprehensive analysis is presented of the subtle differences in the CD spectra of this series of related complexes. Chirality, 2011. © 2010 Wiley‐Liss, Inc. 相似文献
5.
Absolute configurations (ACs) of 3‐alkylphthalides including natural products (?)‐3‐n‐butylphthalide ( (S)‐1 ) and fuscinarin have been studied using chiroptical properties and quantum chemical calculation. Electronic circular dichroism and optical rotatory dispersion spectra of (S)‐1 predicted adopting time‐dependent density functional theory and hybrid functionals coincide very well with the experimental and literature data of (S)‐1 , leading unambiguously to AC assignment as S for levorotatory isomer. The relationship between structures and chiroptical properties of 3‐alkylphthalides were also studied using theoretical calculation. It is found that when the alkyl group is adjacent to the single chiral center in the molecule, both the length of the alkyl side chain and the polarity of solvent may exert significant effect on electronic circular dichroism spectra. On the basis of these observations, it is recommended that the long‐chain alkyl group may be replaced by at least propyl instead of methyl group in such compounds. The present work shows that combination of chiroptical properties and ab initio calculations can provide a feasible and reliable way to the AC establishment of novel 3‐alkylphthalide derivatives with a high degree of confidence. Chirality 24:987‐993, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
6.
Daniele Padula Lorenzo Di Bari Fabrizio Santoro Hans Gerlach Antonio Rizzo 《Chirality》2012,24(12):994-1004
The results of a combined experimental and theoretical study of the electronic circular dichroism spectrum of (?)–[9] (2,5)Pyridinophane are presented. The features observed in the measured spectrum in the 180–350 nm wavelength region are reproduced by a series of calculations carried out within a density functional time‐dependent approach, coupled with a vibronic analysis allowing rationalizing unambiguously the chiral response of the molecule. Chirality 24:994–1004, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
7.
Density function theory calculations of frequency dependent optical rotations ([alpha]omega) for 30 rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the augmented double zeta valence quality plus polarization functions (ADZP) basis set and the BP86 nonhybrid and B3LYP hybrid functionals. Gauge-invariant atomic orbitals were used to guarantee origin-independent values of [alpha]D. Comparison between corresponding results obtained with nonhybrid and hybrid functionals as well as with theoretical optical rotations reported in the literature is done. Excited electronic states of three molecules are also discussed in light of circular dichroism spectra and B3LYP and BP86 calculated excitation energies and rotatory strengths. One verifies that the B3LYP/ADZP results are in better agreement with experiment. 相似文献
8.
Quantum‐mechanical calculations of chiroptical properties have rapidly become the most popular method for assigning absolute configurations (AC) of organic compounds, including natural products. Black‐box time‐dependent Density Functional Theory (TDDFT) calculations of electronic circular dichroism (ECD) spectra are nowadays readily accessible to nonexperts. However, an uncritical attitude may easily deliver a wrong answer. We present to the Chirality Forum a discussion on what can be called good computational practice in running TDDFT ECD calculations, highlighting the most crucial points with several examples from the recent literature. Chirality 28:466–474, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
9.
Chemoenzymatic Approach to Optically Active 4‐Hydroxy‐5‐alkylcyclopent‐2‐en‐1‐one Derivatives: An Application of a Combined Circular Dichroism Spectroscopy and DFT Calculations to Assignment of Absolute Configuration
下载免费PDF全文

Jadwiga Frelek Michał Karchier Daria Madej Karol Michalak Paweł Różański Jerzy Wicha 《Chirality》2014,26(6):300-306
A series of representative optically active derivatives of 4‐hydroxy‐5‐alkylcyclopent‐2‐en‐1‐one were prepared from the respective 2‐furyl methyl carbinols via the Piancatelli rearrangement followed by the enzymatic kinetic resolution of racemates. Applicability of chiroptical methods (experimental and calculated electronic circular dichroism [ECD] and vibrational circular dichroism [VCD] spectra) to determine the absolute configuration of both stereogenic centers in 4‐hydroxy‐5‐methylcyclopent‐2‐en‐1‐one was demonstrated. It was also demonstrated that the concurrent application of ECD and VCD spectroscopy can be used for the determination of the configuration of two stereogenic centers. Chirality 26:300–306, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
10.
Novel copper(II) coordination compounds with chiral macrocyclic imine ligands derived from R-/S-camphor were asymmetrically synthesized and characterized with the aid of chiroptical spectroscopies. Crystal structures of both enantiomers were determined by single crystal X-ray diffraction analysis. Circular dichroism (CD) spectra were analyzed using a simplified exciton model as well as quantum chemical computations. The absolute configuration of the copper(II) coordination compounds determined from CD was found consistent with the crystal data. The copper(II) complexes were further investigated by vibrational CD (VCD) measurement combined with density functional theory calculation. The complex formation was evidenced by spectral shifts of the characteristic bands in the CD and VCD spectra. 相似文献
11.
In this work, we present a theoretical study of the relationship between molecular structure and the red-shift in absorption spectra of S65G and S65T green fluorescent protein (GFP) mutants. To identify the effects of the protein environment, we combined results from molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics calculations to obtain structural properties, and applied time-dependent density functional theory to calculate the excitation energies. By using results from the MD simulations, we were able to provide a systematic analysis of the structural details that may effect the red-shift in the absorption spectra when taking into account temperature effects. Furthermore, a detailed study of hydrogen bonding during the MD simulations demonstrated differences between S65G and S65T, for example, regarding hydrogen bonding with Glu222. An analysis of the absorption spectra for different forms of the chromophore emphasized the dominance of the anionic forms in solution for the S65G and S65T GFP mutants. 相似文献
12.
Based on the time-dependent density functional response theory, an approach for the prediction of optical rotations of enantiomers of conformationally flexible molecules was developed. The method was applied successfully for the determination of the absolute configuration of trans-2-fluorocycloalkanol acetates with different ring sizes. The largest deviations between experimental and theoretical [alpha](D) values are 10 deg x [dm x (g/cc)](-1) (about 20% error). These theoretical results suggest that the optical rotation in these molecules is dominated by the local (1R;2R) configuration of the two substituents and that different ring and even axial/equatorial orientations play a less important role. 相似文献
13.
Circular dichroism (CD) calculations of flexible natural products have been difficult because of the large number of low‐energy conformers and ambiguous Boltzmann distributions. In this article, through electronic (ECD) and vibrational (VCD) studies on a natural product, (+)‐daurichromenic acid, we demonstrate that derivatization of a flexible molecule can dramatically reduce its flexibility. This work also shows the usefulness of derivatization for diminishing computational expenses required for optimization and CD calculations, and for increasing the reliability of the assignment of absolute configuration. Chirality 28:453–459, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
14.
Two stereoisomers of ascolactone (A, B), natural products with two asymmetric carbon atoms, are isolated from the marine-derived fungus Ascochyta salicorniae. Although these compounds show virtually opposite CD spectra and [alpha]D, 1H- and 13C-NMR data exclude the presence of enantiomers and suggest ascolactone A and B to be epimeric lactones. By comparing the experimental CD spectra with those calculated employing time-dependent density functional theory (TDDFT), we elucidate the configuration at one of the asymmetric carbon atoms. 相似文献
15.
Chiral α‐methylbenzyl amine is a well known and often used chiral auxiliary, e.g., in the resolution of racemates or asymmetric catalysis. In this work, α‐methylbenzyl amine and its derivatives N,α‐dimethylbenzyl amine, N,N,α‐trimethylbenzyl amine, and bis[α‐methylbenzyl] amine were investigated by vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT). For all compounds, stable low energy conformers were obtained by the DFT calculations and based on those, the theoretical vibrational absorption (VA) and VCD spectra were calculated and compared with experimental spectra. Hence, the absolute configurations and conformational preferences were determined. A qualitative comparison of all the experimental VCD spectra of the investigated chiral molecules supported by the calculated ones is given which clearly shows similarities between the spectra of the different chiral amines. These can be assigned to vibrations of the unchanged chiral center. Chirality 2010. © 2010 Wiley‐Liss, Inc. 相似文献
16.
A model cyclohexapeptide, cyclo-(Phe-(D)Pro-Gly-Arg-Gly-Asp) was synthesized and its IR and VCD spectra were used as a test of density functional theory (DFT) level predictions of spectral intensities for a peptide with a nonrepeating but partially constricted conformation. Peptide structure and flexibility was estimated by molecular dynamics (MD) simulations and the spectra were simulated using full quantum mechanical (QM) approaches for the complete peptide and for simplified models with truncated side chains. After simulated annealing, the backbone conformation of the ring structure is relatively stable, consisting of a normal beta-turn and a tight loop (no H-bond) which does not vary over short trajectories. Only in quite long MD runs at high temperatures do other conformations appear. MD simulations were carried out for the cyclic peptide in water and in TFE, which match experimental solvents, as well as with and without protonation of the Asp carboxyl group. DFT spectral simulations were made using the annealed structure and were extended to include basis set variation, to determine an optimal computational approach, and solvent simulation with a polarized continuum model (PCM). Stepwise full DFT simulation of spectra was done for various sequences with the same backbone geometry but based on (1) solely Gly residues, (2) Ala substitution except Gly and Pro, and (3) complete sequences with side chains. Additionally, a selection of structures was used to compute IR and VCD spectra with the optimal method to determine structural variation effects. The side chains, especially the Asp-COOH and Arg-NH(2) transitions, had an impact on the computed amide frequencies, IR intensities and VCD pattern. Since experimentally these groups would have little chirality, due to conformational variation, they do not impact the observed VCD spectra. Correcting for frequency shifts, the Ala model for the cyclopeptide gives the clearest representation of the amide VCD. The experimental sign pattern for the amide I' band in D(2)O and also the sharper, more intense amide I VCD band in TFE was seen to some degree in one conformer with Type II' turns, but the data favor a mix of structures. 相似文献
17.
New efficient catalysts based on electrophilic N‐fluoro quaternary ammonium salts are reported for catalytic allylation of (E)‐N,1‐diphenylmethanimine. The chiral version of the catalyst based on cinchonidine (F‐CD‐BF4) shows high catalytic activity with approximately 94% ee and TOF (>800 h?1). The F‐CD‐BF4 is prepared from cinchonidine and Selectfluor by one‐step transfer fluorination. 相似文献
18.
A calculation of the circular dichroism (CD) spectra of carbonmonoxy- and deoxy-myoglobin is carried out in relation to a time-resolved CD experiment. This calculation allows us to assign a dominant role to the proximal histidine in the definition of the electronic normal modes and to interpret the transient CD structure observed in a strain of the proximal histidine. This strain builds up in 10 ps and relaxes in 50 ps as the protein evolves towards its deoxy form. 相似文献
19.
Javier Cerezo Daniel Aranda Francisco J. Avila Ferrer Giacomo Prampolini Giuseppe Mazzeo Giovanna Longhi Sergio Abbate Fabrizio Santoro 《Chirality》2018,30(6):730-743
We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)‐2,2,2‐trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. 相似文献
20.
Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). 相似文献