首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from canine kidney reconstituted into phospholipid vesicles showed an ATP-dependent, ouabain-inhibited uptake of 22Na+ in the absence of added K+. This transport occurred against a Na+ concentration gradient, was not affected by increasing the K+ concentration to 10 microM (four times the endogenous level), and could not be explained in terms of Na+in in equilibrium Na+out exchange. K+-independent transport occurred with a stoichiometry of 0.5 mol of Na+ per mol of ATP hydrolyzed as compared with 2.9 mol of Na+ per mol of ATP for K+-dependent transport.  相似文献   

2.
3.
4.
(Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) consists of two polypeptide chains, a large polypeptide with a molecular weight of about 100,000, and a sialoglycoprotein with a molecular weight of about 40,000. Cross-linking of purified NaK-ATPase with the (o-phenanthroline)2-cupric ion complex (CP) results in the reversible formation of dimers, trimers, tetramers, and pentamers of the large polypeptide and loss of NaK-ATPase activity. ATPase activity is partially recovered if NaK-ATPase is incubated with beta-mercaptoethanol after treatment with CP. In contrast to these results, if NaK-ATPase is cross-linked in crude canine kidney microsomes, only a dimer of the large polypeptide is formed. No cross-linking of the sialoglycoprotein to the large polypeptide is detected when NaK-ATPase is cross-linked in purified form. However, when NaK-ATPase is reacted with CP in either purified or microsomal form, the sialoglycoprotein cross-links to itself yielding a high molecular weight aggregate. The results show that the functional subunit structure of NaK-ATPase consists of at least two large polypeptides.  相似文献   

5.
6.
7.
Effects of Na+, K+, and nucleotides on Mg2+-dependent phosphorylation of (Na+ + K+)-dependent adenosine triphosphatase by Pi were studied under equilibrium conditions. Na+ was a linear competitive inhibitor with respect to Mg2+ and a mixed inhibitor with respect to Pi. K+ was a partial inhibitor; it interacted with positive cooperativity and induced negative cooperativities in the interactions of Mg2+ and Pi with the enzyme. Adenyl-5'-yl (beta, gamma-methylene)diphosphonate, a nonhydrolyzable analog of ATP, interacted with negative cooperativity to inhibit phosphorylation in competition with Pi. ATP was also a competitive inhibitor. Na+ and K+ acted antagonistically, Na+ and nucleotides inhibited synergistically, and K+ and nucleotides were mutually exclusive. In the presence of ouabain, when nucleotides were excluded from the site inhibiting phosphorylation, a low affinity regulatory site for nucleotides became apparent, the occupation of which reduced the rate of dephosphorylation and the initial rate of phosphorylation of the enzyme without affecting the equilibrium constant of the reaction of Pi with the ouabain-complexed enzyme. The regulatory site was also detected in the absence of ouabain. The data suggest that catalytic and transport functions of the oligomeric enzyme may be regulated by homotropic and heterotropic site-site interactions, ligand-induced slow isomerizations, and distinct catalytic and regulatory sites for ATP.  相似文献   

8.
9.
10.
11.
Amino acids stimulated the (Na+ + K+)-dependent ATPase activity of a rabbit kidney preparation without affecting the Mg2+-ATPase activity; the most effective was histidine, producing a 2-fold increase in activity. Similar stimulation was produced by the well-known chelators EDTA, EGTA, and 8-hydroxyquinoline, and by the chelating phospholipid phosphatidylserine. In the presence of maximally effective concentrations of one agent, the other agents were unable to produce additional stimulation. It is suggested that the amino acids, phosphatidylserine, and the conventional chelators all stimulate the ATPase by a common mechanism: the removal of inhibitory trace metal (s). From measurements of the metal content of the enzyme preparation and experiments with extracted reagents it was concluded that the chelatable inhibitor was in the reagents used in the incubation medium rather than being endogenous to the enzyme; attempts to identify the inhibitor (s) were unsuccessful. The chelators also stimulated the K+-dependent phosphatase activity in the preparation but had no major effect on Na+-dependent incorporation of 32P from [32P]ATP. On monovalent cation activation the chelators appeared to relieve an uncompetitive inhibition of Na32 activation and a noncompetitive inhibition of K32 activation, also suggesting an action of the chelatable inhibitor on the later stages of the ATPase reaction sequence.  相似文献   

12.
13.
Exposure of ARL 15 cells, an established line from adult rat liver, to concentrations of external K+ below 1 mM caused a rapid fall in intracellular K+ and a corresponding rise in intracellular Na+ that became maximal within 12 h. Upon continued exposure to low external K+, these initial changes were followed by a striking recovery such that, by 24 h, intracellular Na+ and K+ concentrations approached their control values. Concomitant with this recovery, there was a substantial increase in Na,K-ATPase specific activity that was detectable at 12 h and maximal at 24 h. After restoration of the external K+ concentration, the elevated level of enzyme activity showed little change for at least 24 h. In contrast, restoration of external K+ resulted in a rapid rise in intracellular K+ and a fall in Na+ such that within 30 min the Na+/K+ ratio was lower than in control cells. This overshoot, together with a demonstrated increase in active 86Rb+ uptake under "Vmax" conditions, confirms that the enhancement in Na,K-ATPase specific activity in response to low external K+ represents an increase in functional Na,K pumping capacity.  相似文献   

14.
The activation of a wide range of cellular receptors has been detected previously using a novel instrument, the microphysiometer. In this study microphysiometry was used to monitor the basal and cholinergic-stimulated activity of the Na+/K+ adenosine triphosphatase (ATPase) (the Na+/K+ pump) in the human rhabdomyosarcoma cell line TE671. Manipulations of Na+/K+ ATPase activity with ouabain or removal of extracellular K+ revealed that this ion pump was responsible for 8.8 +/- 0.7% of the total cellular energy utilization by those cells as monitored by the production of acid metabolites. Activation of the pump after a period of inhibition transiently increased the acidification rate above baseline, corresponding to increases in intracellular [Na+] ([Na+]i) occurring while the pump was off. The amplitude of this transient was a function of the total [Na+]i excursion in the absence of pump activity, which in turn depended on the duration of pump inhibition and the Na+ influx rate. Manipulations of the mode of energy metabolism in these cells by changes of the carbon substrate and use of metabolic inhibitors revealed that, unlike some other cells studied, the Na+/K+ ATPase in TE671 cells does not depend on any one mode of metabolism for its adenosine triphosphate source. Stimulation of cholinergic receptors in these cells with carbachol activated the Na+/K+ ATPase via an increase in [Na+]i rather than a direct activation of the ATPase.  相似文献   

15.
16.
(Na+ + K+)-dependent adenosine triphosphatase (NaK ATPase) consists of two polypeptide chains, a large polypeptide with a molecular weight of about 100,000, and a sialoglycoprotein with a molecular weight of about 40,000. In the presence of Triton X-100 both polypeptides react to form high molecular weight aggregates with apparent molecular weights of 168,000, 200,000 and 260,000. These aggregates arise as a result of disulfide bond formation which results from the autooxidation of sulfhydryl groups on the two polypeptides of NaK ATPase. These data are discussed in light of studies aimed at determining the size and subunit structure of membrane proteins with Triton X-100.  相似文献   

17.
18.
(Na+K)-activated ATPase activity from gills of yearling spring chinook was examined using a new rapid assay method. Characterization of the enzyme activity was performed. Optimal activity was obtained at pH 7.2 in the presence of 240 mM NaCl, 120 mM KCl, 20 mM MgCl2 and 10 mM Na2ATP. Maximal inhibition of the enzyme was observed in the presence of 0.5 mM ouabain. Differential centrifugation indicated that 75% of the enzymatic activity was sedimented at 1000 x g. Only 8% of the activity was found in the microsomal pellet. Treatment with 0.1% sodium deoxycholate liberated activity from the 1000 x g pellet and elevated the activity. This treatment caused a loss of 20% of the original activity of the preparation. Statistical analysis of the sampling procedure for gill (Na+K)-activated ATPase activity indicated that there was small variation in the technique itself when compared to variation between the individual gill arches and between individual fish. Results indicate that for meaningful comparisons of groups of fish, the sampling of the gill arches must be standardized and a large number of individual fish must be sampled.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号