首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection for phenotypic plasticity in Rana sylvatica tadpoles   总被引:1,自引:0,他引:1  
The hypothesis that phenotypic plasticity is an adaptation to environmental variation rests on the two assumptions that plasticity improves the performance of individuals that possess it, and that it evolved in response to selection imposed in heterogeneous environments. The first assumption has been upheld by studies showing the beneficial nature of plasticity. The second assumption is difficult to test since it requires knowing about selection acting in the past. However, it can be tested in its general form by asking whether natural selection currently acts to maintain phenotypic plasticity. We adopted this approach in a study of plastic morphological traits in larvae of the wood frog, Rana sybatica. First we reared tadpoles in artificial ponds for 18 days, in either the presence or absence of Anax dragonfly larvae (confined within cages to prevent them from killing the tadpoles). These conditioning treatments produced dramatic differences in size and shape: tadpoles from ponds with predators were smaller and had relatively short bodies and deep tail fins. We estimated selection by Anax on the two kinds of tadpoles by testing for non-random mortality in overnight predation trials. Dragonflies imposed strong selection by preferentially killing individuals with relatively shallow and short tail fins, and narrow tail muscles. The same traits that exhibited the strongest plasticity were under the strongest selection, except that tail muscle width exhibited no plasticity but experienced strong increasing selection. A laboratory competition experiment, testing for selection in the absence of predators, showed that tadpoles with deep tail fins grew relatively slowly. In the cattle tanks, where there were also no free predators, the predator-induced phenotype survived more poorly and developed slowly, but this cost was apparently not associated with particular morphological traits. These results indicate that selection is currently promoting morphological plasticity in R. sylvatica, and support the hypothesis that plasticity represents an adaptation to variable predator environments.  相似文献   

2.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   

3.
In natural systems, organisms are frequently exposed to spatial and temporal variation in predation risk. Prey organisms are known to develop a wide array of plastic defences to avoid being eaten. If inducible plastic defences are costly, prey living under fluctuating predation risk should be strongly selected to develop reversible plastic traits and adjust their defences to the current predation risk. Here, we studied the induction and reversibility of antipredator defences in common frog Rana temporaria tadpoles when confronted with a temporal switch in predation risk by dragonfly larvae. We examined the behaviour and morphology of tadpoles in experimental treatments where predators were added or withdrawn at mid larval development, and compared these to treatments with constant absence or presence of predators. As previous studies have overlooked the effects that developing reversible anti‐predator responses could have later in life (e.g. at life history switch points), we also estimated the impact that changes in antipredator responses had on the timing of and size at metamorphosis. In the presence of predators, tadpoles reduced their activity and developed wider bodies, and shorter and wider tails. When predators were removed tadpoles switched their behaviour within one hour to match that found in the constant environments. The morphology matched that in the constant environments in one week after treatment reversal. All these responses were highly symmetrical. Short time lags and symmetrical responses for the induction/reversal of defences suggest that a strategy with fast switches between phenotypes could be favoured in order to maximise growth opportunities even at the potential cost of phenotypic mismatches. We found no costs of developing reversible responses to predators in terms of life‐history traits, but a general cost of the induction of the defences for all the individuals experiencing predation risk during some part of the larval development (delayed metamorphosis). More studies examining the reversibility of plastic defences, including other type of costs (e.g. physiological), are needed to better understand the adaptive value of these flexible strategies.  相似文献   

4.
Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of surviving in the presence of predators (an innovation) or if it represents a simple extension of the way noninduced tadpoles survive predation. Tadpoles of Limnodynastes peronii were raised in the presence and absence of predation, which then entered a survival experiment. Induced morphological traits, primarily tail height and tail muscle height, were found to be under selection, indicating that predator-mediated phenotypic plasticity may be adaptive. Although predator-induced animals survived better, the multivariate linear selection gradients were similar between the two tadpole groups, suggesting that predator-mediated phenotypic plasticity is an extension of existing survival strategies. In addition, nonlinear selection gradients indicated a cost of predator-induced plasticity that may limit the ability of phenotypic plasticity to enhance survival in the presence of predators.  相似文献   

5.
Inducible defenses of prey and inducible offenses of predators are examples of adaptive phenotypic plasticity. Although evolutionary ecologists have paid considerable attention to the adaptive significances of these strategies, they have rarely focused on their evolutionary impacts on the interacting species. Because the functional phenotypes of predator and prey determine strength of interactions between the species, the inducible plasticity can modify selective pressure on trait distribution and, ultimately, trait evolution in the interacting species. We experimentally tested this hypothesis in a predator–prey system composed of salamander larvae (Hynobius retardatus) and frog tadpoles (Rana pirica) capable of expressing antagonistic inducible offensive or defensive traits, an enlarged gape in the salamander larvae and a bulgy body in the tadpoles, when predator–prey interactions are strong. We examined selection strength on the tadpole’s defensive trait by comparing survival rates of tadpoles with different defensive levels under predation pressure from offensive or non-offensive salamander larvae. Survival rates of more-defensive tadpoles were greater than those of less-defensive tadpoles only when the tadpoles were exposed to offensive salamander larvae; thus, the predator’s offensive phenotype could select for an amplified defensive phenotype in their prey. As the expression of inducible offenses by H. retardatus larvae depends greatly on the composition of its ecological community, the inducible defensive bulgy morph of R. pirica tadpoles might have evolved in response to the variable expression of the H. retardatus offensive larval phenotype.  相似文献   

6.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

7.
I document a genetic basis for parallel evolution of life-history phenotypes in the livebearing fish Brachyrhaphis rhabdophora from northwestern Costa Rica. In previous work, I showed that populations of B. rhabdophora that co-occur with predators attain maturity at smaller sizes than populations that live in predator-free environments. I also demonstrated that this pattern of phenotypic divergence in life histories was independently repeated in at least five isolated drainages. However, life-history phenotypes measured from wild-caught fish could be attributed to environmental effects rather than to genetic differences among populations. In the present study, I reared male fish from four populations (two that co-occur with predators and two from predator-free environments) under four sets of environmental conditions. The pattern of phenotypic divergence in maturation size documented in the field between populations collected from different predation environments persisted after two generations in the laboratory. I also found a genetic basis for differences between populations in the age at which males attain maturity and in growth rates. By rearing fish in four different common environments, I tested for phenotypic plasticity in male life-history traits in response to nonlethal exposure to predators. There was a significant delay in the onset of sexual maturity in fish exposed to predators relative to those in the control, but no differences among treatments in size at maturity or growth rates. These results, coupled with previous work on B. rhabdophora, demonstrate a repeated pattern of parallel evolutionary divergence among genetically isolated populations that is strongly associated with predation.  相似文献   

8.
P. Eklöv 《Oecologia》2000,123(2):192-199
Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water was regularly transferred from predation trials (outdoor experiment) to aquaria (indoor experiment) in which activity and growth of tadpoles was measured. The highest predation mortality of small bullfrog larvae in the outdoor experiment was due to Anax, and it was slightly lower in the presence of both predators, probably resulting from interactions between predators. There was almost no mortality of prey with bluegill. The activity and growth of small bullfrog larvae was highest in the absence of predators and lowest in the presence of Anax. In the presence of bluegill only, or with both predators, the activity and growth of small bullfrog tadpoles was intermediate. Predators did not affect large tadpole activity and growth. Regressing mortality of small bullfrog tadpoles against activity and growth of bullfrog tadpoles revealed a significant effect for small bullfrog larvae but a non-significant effect for large bullfrog larvae. This shows that the response of bullfrog tadpoles to predators is related to their own body size. The experiment demonstrates that chemical cues are released both as predator odor and as alarm substances and both have the potential to strongly alter the activity and growth of prey. Different mechanisms by which chemical cues may be transmitted to species interactions in the food web are discussed. Received: 28 June 1999 / Accepted: 15 November 1999  相似文献   

9.
Understanding the role of history in the formation of communities has been a major challenge in community ecology. Here, we explore the role of phenotypic plasticity and its associated trait‐mediated indirect interactions as a mechanism behind priority effects. Using organisms with inducible defenses as a model system, we examine how aquatic communities initially containing different predator environments are affected at the individual and community level by the colonization of a second predator. Snails and tadpoles were established in four different caged‐predator environments (no predator, fish, crayfish or water bugs). These four communities were then crossed with three predator colonization treatments (no colonization, early colonization, or late colonization) using lethal water bugs as the predator. The snails responded to the caged predator environments with predator‐specific behavioral and morphological defenses. In the colonization treatments, snails possessing the wrong phenotype attempted to induce phenotypic changes to defend themselves against the new risk. However, snails initially induced by a different predator environment often suffered high predation rates. Hence, temporal variation in predation risk not only challenged the snail prey to try to track this environmental variation through time by adjusting their defensive phenotypes, but also caused trait‐mediated interactions between snails and the colonizing predator. For tadpoles within these communities, there was little evidence that the morphological responses of snails indirectly effected tadpole predation rates by colonizing water bugs. Unexpectedly, predation rates on tadpoles by colonizing water bugs were generally higher in the three caged‐predator treatments, suggesting that water bugs elevated their foraging activity in response to potentially competing predators. In summary, we demonstrate an important priority effect in which the initial occurrence of one species of predator can facilitate predation by a second predator that colonizes at a later date (i.e. a TMII) suggesting that phenotypic plasticity can be an important driver behind priority effects (i.e. historical exposure to predators).  相似文献   

10.
The phenotypes of gray treefrog (Hyla chrysoscelis) tadpoles vary depending on whether predators are present in the pond. Tadpoles reared in ponds with predatory dragonfly larvae are relatively inactive compared with tadpoles in predator-free ponds, and have relatively large, brightly colored tailfins with dark spots along the margins. Models for the evolution of plasticity predict that induced phenotypes such as this should confer high fitness relative to the typical phenotype when in the presence of predators, but should be costly when the predator is absent. Our study tested for the predicted fitness trade-off in H. chrysoscelis by first rearing tadpoles in mesocosms under conditions that induce the alternate phenotypes, and then comparing the performance of both phenotypes in both environments. We generated the two phenotypes by rearing tadpoles in 600-liter outdoor artificial ponds that contained either two caged dragonflies (Anax junius) or an empty cage. Tadpoles from the two environments showed significantly different behavior, tail shape, and tail color within two weeks of exposure. We compared the growth and survival of both phenotypes over four weeks in ponds where there was no actual risk of predation. Under these conditions, both phenotypes grew at the same rate, but the predator-induced phenotype had significantly lower survival than the typical phenotype, indicating that induced tadpoles suffered greater mortality from causes other than odonate predation. We tested the susceptibility of both phenotypes to predation by exposing them to dragonflies in 24-h predation trials. The predator-induced phenotype showed a significant survival advantage in these trials. These results confirm that the predator-induced phenotype in H. chrysoscelis larvae is associated with fitness costs and benefits that explain why the defensive phenotype is induced rather than constitutive.  相似文献   

11.
Schoeppner NM  Relyea RA 《Oecologia》2008,154(4):743-754
Most organisms possess traits that are sensitive to changes in the environment (i.e., plastic traits) which results in the expression of environmentally induced polymorphisms. While most phenotypically plastic traits have traditionally been treated as threshold switches between induced and uninduced states, there is growing evidence that many traits can respond in a continuous fashion. In this experiment we exposed larval anurans (wood frog tadpoles, Rana sylvatica) to an increasing gradient of predation risk to determine how organisms respond to small environmental changes. We manipulated predation risk in two ways: by altering the amount of prey consumed by a constant number of predators (Dytiscus sp.) and by altering the number of predators that consume a constant amount of prey. We then quantified the expression of predator-induced behavior, morphology, and mass to determine the level of risk that induced each trait, the level of risk that induced the maximal phenotypic response for each trait, whether the different traits exhibited a plateauing response, and whether increasing risk via increasing predator number or via increasing prey consumption induced similar phenotypic changes. We found that all of the traits exhibited fine-tuned, graded responses and most of them exhibited a plateauing response with increased predation risk, suggesting either a limit to plasticity or the reflection of high costs of the defensive phenotype. For many traits, a large proportion of the maximum induction occurred at low levels of risk, suggesting that the chemical cues of predation are effective at extremely low concentrations. In contrast to earlier work, we found that behavioral and morphological responses to increased predator number were simply a response to increased total prey consumption. These results have important implications for models of plasticity evolution, models of optimal phenotypic design, expectations for how organisms respond to fine-grained changes (i.e., within generation) in their environment, and impacts on ecological communities via trait-mediated indirect effects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Theoretical and empirical research has demonstrated that phenotypically plastic responses to one environment are dependent on other environmental attributes. Such research is critical considering the complexity of natural habitats, yet few studies have examined how multiple environments affect patterns of plasticity and the adaptiveness of the resulting phenotypes within complex habitats. The present study examines how wood frog (Rana sylvatica) tadpoles alter their behavioural and morphological phenotypes in response to predation risk from larval diving beetles (Dytiscus spp.), competition from conspecifics, and physical structural complexity. It also tests whether structure affects selection intensities by Dytiscus larvae on tadpole morphological traits. Predation risk and competition induced typical changes to tadpole behaviour and morphology. Structure did not induce changes to any phenotype, nor did it interact with predation risk or competition in affecting phenotypes. Furthermore, structure did not affect the predator selection intensities on any morphological trait. Dytiscus larvae selected for shallow, short tailfins, and large tail muscles, yet tadpoles only developed deep tail muscles when raised in the presence of predator cues. These apparently maladaptive responses may have been a result of correlations between phenotypes. The present study expands plasticity research by examining the adaptiveness of plastic responses in complex environments. Additionally, the present study demonstrates that not all environments induce plastic responses. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 853–863.  相似文献   

13.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

14.
Invasive predators can devastate native species and ecosystems. However, native species may be able to coexist with invasive predators through a variety of mechanisms, such as changes in morphology or behavior due to a plastic response or selection on fixed anti-predator traits. We examined whether exposed and naive populations of Pacific tree frog tadpoles (Pseudacris regilla) display divergent morphological and behavioral traits in response to the invasive predatory red swamp crayfish (Procambarus clarkii). Tadpoles were collected from three study streams with and three without crayfish, in the Santa Monica Mountains of Southern California. We analyzed tadpole morphology and tested anti-predator behavior and survival in the laboratory. Tadpoles from streams with crayfish had shallower, narrower tails than tadpoles from streams without crayfish. Tadpoles from streams with and without crayfish were less active after exposure to crayfish chemical cues. The divergent morphology of naive and exposed tadpoles is consistent with tadpoles exhibiting a plastic response to crayfish or undergoing selection from crayfish predation. In laboratory predation experiments, we found no difference in survival between tadpoles from streams with and without crayfish but tadpoles that survived predation had deeper tail muscles than those that were killed or injured. Our results suggest that deeper tails are advantageous in the presence of crayfish, yet tadpoles from crayfish streams had shallower tails than those from crayfish-free streams. Shallower tails may have an alternative unmeasured advantage or there may be a physiological constraint to developing deeper tails in the wild. These results highlight the ability of a native frog to respond to an invasive predatory crayfish, potentially allowing for coexistence.  相似文献   

15.
Cannibalism among predators is a key intraspecific interaction affecting their density and foraging behavior, eventually modifying the strength of predation on heterospecific prey. Interestingly, previous studies showed that cannibalism among predators can increase or reduce predation on heterospecific prey; however, we know less about the factors that lead to these outcomes. Using a simple pond community consisting of Hynobius retardatus salamander larvae and their associated prey, I report empirical evidence that cannibalism among predators can increase predation on large heterospecific prey but reduce that on small heterospecific prey. In a field‐enclosure experiment in which I manipulated the occurrence of salamander cannibalism, I found that salamander cannibalism increased predation on frog tadpoles but reduced that on aquatic insects simultaneously. The contrasting effects are most likely to be explained by prey body size. In the study system, frog tadpoles were too large for non‐cannibal salamanders to consume, while aquatic insects were within the non‐cannibals’ consumable prey size range. However, when cannibalism occurred, a few individuals that succeeded in cannibalizing reached large enough size to consume frog tadpoles. Consequently, although cannibalism among salamanders reduced their density, salamander cannibalism increased predation on large prey frog tadpoles. Meanwhile, salamander cannibalism reduced predation on small prey aquatic insects probably because of a density reduction of non‐cannibals primarily consuming aquatic insects. Body size is often correlated with various ecological traits, for instance, diet width, consumption, and excretion rates, and is thus considered a good indicator of species’ effects on ecosystem function. All this considered, cannibalism among predators could eventually affect ecosystem function by shifting the size composition of the prey community.  相似文献   

16.
Models suggest that phenotypic plasticity is maintained in situations where the optimal phenotype differs through time or space, so that selection acts in different directions in different environments. Some empirical work supports the general premise of this prediction because phenotypes induced by a particular environment sometimes perform better than other phenotypes when tested in that environment. We have extended these results by estimating the targets of selection in Pseudacris triseriata tadpoles in environments without predators and with larval Anax dragonflies. Tadpoles displayed significant behavioral and morphological plasticity when reared in the presence and absence of nonlethal dragonflies for 32 days in cattle tanks. We measured selection in the absence of free predators by regressing growth and survival in the tanks against activity and several measures of tail and body shape. We measured selection in the presence of predators by exposing groups of 10 tadpoles to Anax in overnight predation trials and regressing the average phenotype of survivors against the number of tadpoles killed. Selection in the two environments acted in opposite directions on both tail and body shape, although the affected fitness components were different. In the presence of Anax, tadpoles with shallow and narrow body, deep tail fin, and wide tail muscle survived best. In the absence of free predators, tadpoles with narrow tail muscle grew significantly faster, and those with shallow tail fin and deep body grew somewhat faster. Activity was unrelated to survival or growth in either environment. Developmental plasticity in tail shape closely paralleled selection, because tail fin depth increased after long-term exposure to Anax and tail muscle width tended to increase. In contrast, there was no plasticity in body shape in spite of strong selection for decreasing body depth. Thus, when confronted with a dragonfly predator, P. triseriata tadpoles adjusted their tail shape (but not body shape) almost exactly in the direction of selection imposed by Anax. These results suggest that phenotypic plasticity in some morphological traits, such as tail depth and tail muscle width, has evolved under intermittent selection by dragonflies. Other traits that undergo selection by dragonflies, such as body morphology, appear developmentally rigid, perhaps because of historically strong opposing selection in nature or other constraints.  相似文献   

17.
Activity is an important behavioral trait that mediates a trade-offbetween obtaining food for growth and avoiding predation. Activeindividuals usually experience a higher encounter rate withfood items and suffer higher predation pressure than less activeindividuals. I investigated how activity of the damselfly Lestescongener is affected by larval state and predator presence andif larval behavioral type (BT) can be used to predict larvalboldness, foraging success, and adult BT. Activity level ofindividual larvae was studied without predator at 2 differentphysiological states (hungry and fed) and in 2 predator treatments:familiar predator cues and unfamiliar predator cues. Larvaedid not adjust their activity depending on state or when subjectedto unfamiliar predator cues, but a general reduction in activitywas seen in the familiar predator treatment. Hence, active individualsremained active compared with their conspecifics, independentof state or predator treatment. Active individuals were alsobolder and more efficient foragers than their less active conspecifics.Furthermore, both adult activity and boldness were correlatedwith larval BT. The results illustrate that BT of a larvae iscarried over many different situations keeping active larvaeactive even in maladaptive situations, demonstrating how a behavioralsyndrome may constrain behavioral plasticity. Furthermore, resultsshowed that behavioral syndromes can carry over from larvaethrough metamorphosis and dictate the BT of the adult.  相似文献   

18.
Steiner UK 《Oecologia》2007,152(2):201-210
An organism’s investment in different traits to reduce predation is determined by the fitness benefit of the defense relative to the fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insufficient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models. In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated with these defenses were reduced developmental rate, reduced growth, and reduced survival. At low resource availability, these costs predominately resulted in reduced survival, while at high resource availability the costs yielded a reduced developmental rate. Defensive traits responded strongly to predation risk, but did not respond to resource availability (with the exception of feeding activity), whereas traits construed as costs of defenses showed the opposite pattern. Therefore, defensive traits were highly sensitive to predation risk, while traits construed as costs of defense were highly sensitive to resource allocation tradeoffs. This difference in sensitivity between the two groups of traits may explain why the correlation between the expression of defensive traits and the expression of the associated defense costs was weak. Furthermore, my results indicate that genetic linkages and mechanistic integration of multiple defensive traits and their associated costs may constrain time and resource allocation in ways that are not addressed in existing models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
For species with complex life cycles, transitions between life stages result in niche shifts that are often associated with evolutionary trade-offs. When conditions across life stages are unpredictable, plasticity in niche shift timing may be adaptive; however, factors associated with clutch identity (e.g., genetic or maternal) may influence the effects of such plasticity. The red-eyed treefrog (Agalychnis callidryas) is an ideal organism for investigating the effects of genetics and life stage switch point timing because embryos exhibit adaptive phenotypic plasticity in hatching time. In this study, we evaluated the effects of experimentally manipulated hatching time and clutch identity on antipredator behavior of tadpoles and on developmental traits of metamorphs, including larval period, mass, SVL, and jumping ability. We found that in the presence of dragonfly nymph predator cues at 21 days post-oviposition, tadpoles reduced both their activity level and height in the water column. Furthermore, early-hatched tadpoles were less active than late-hatched tadpoles of the same age. This difference in behavior patterns of early- and late-hatched tadpoles may represent an adaptive response due to a longer period of susceptibility to odonate predators for early-hatched tadpoles, or it may be a carry-over effect mediated by early exposure to an environmental stressor (i.e., induction of early hatching). We also found that hatching time affected both behavioral traits and developmental traits, but its effect on developmental traits varied significantly among clutches. This study shows that a single early-life event may influence a suite of factors during subsequent life stages and that some of these effects appear to be dependent on clutch identity. This interaction may represent an evolutionary response to a complex life cycle and unpredictable environments, regardless of whether the clutch differences are due to additive genetic variance or maternal effects.  相似文献   

20.
Theory holds that adaptive phenotypic plasticity evolves under spatial or temporal variation in natural selection. I tested this prediction in a classic system of predator‐induced plasticity: frog tadpoles (Rana temporaria) reacting to predaceous aquatic insects. An outdoor mesocosm experiment manipulating exposure to Aeshna dragonfly larvae revealed plasticity in most characters: growth, development, behavior, and external morphology. I measured selection by placing 1927 tadpoles into enclosures within natural ponds; photographs permitted identification of the survivors six to nine days later. Fitness was defined as a linear combination of growth, development, and survival that correlates with survival to age 2 in another anuran species. In enclosures with many predators, selection‐favored character values similar to those induced by exposure to Aeshna in mesocosms. The shift in selection along the predation gradient was strongest for characters that exhibited high predator‐induced plasticity. A field survey of 50 ponds revealed that predator density changes over a spatial scale relevant for movement of individual adults and larvae: 17% of variation in predation risk was among ponds separated by tens to thousands of meters and 81% was among sites ≤10 m apart within ponds. These results on heterogeneity in the selection regime confirm a key tenant of the standard model for the evolution of plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号