首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial degradation of arsenobetaine via dimethylarsinoylacetate   总被引:1,自引:0,他引:1  
Microorganisms from Mytilus edulis (marine mussel) degraded arsenobetaine, with the formation of trimethylarsine oxide, dimethylarsinate and methylarsonate. Four bacterial isolates from these mixed-cultures were shown by HPLC/hydride generation-atomic fluorescence spectroscopy (HPLC/HG-AFS) analysis to degrade arsenobetaine to dimethylarsinate in pure culture; there was no evidence of trimethylarsine oxide formation. Two of the isolates ( Paenibacillus sp. strain 13943 and Pseudomonas sp. strain 13944) were shown by HPLC/inductively coupled plasma-mass spectrometry (HPLC/ICPMS) analysis to degrade arsenobetaine by initial cleavage of a methyl-arsenic bond to form dimethylarsinoylacetate, with subsequent cleavage of the carboxymethyl-arsenic bond to yield dimethylarsinate. Arsenobetaine biodegradation by pure cultures was biphasic, with dimethylarsinoylacetate accumulating in culture supernatants during the culture growth phase and its removal accompanying dimethylarsinate formation during a carbon-limited stationary phase. The Paenibacillus sp. also converted exogenously supplied dimethylarsinoylacetate to dimethylarsinate only under carbon-limited conditions. Lysed-cell extracts of the Paenibacillus sp. showed constitutive expression of enzyme(s) capable of arsenobetaine degradation through methyl-arsenic and carboxymethyl-arsenic bond cleavage. The work establishes the capability of particular bacteria to cleave both types of arsenic-carbon bonds of arsenobetaine and demonstrates that mixed-community functioning is not an obligate requirement for arsenobetaine biodegradation.  相似文献   

2.
Concentrations of total arsenic and individual arsenic compounds were determined in liver samples of pinnipeds (northern fur seal Callorhinus ursinus and ringed seal Pusa hispida), seabirds (black-footed albatross Diomedea nigripes and black-tailed gull Larus crassirostris) and sea turtles (hawksbill turtle Eretmochelys imbricata and green turtle Chelonia mydas). Among these species, the black-footed albatross contained the highest hepatic arsenic concentration (5.8+/-3.7 microg/g wet mass). Arsenobetaine was the major arsenic species found in the liver of all these higher tropic marine animals. To investigate the cause of high accumulation of arsenobetaine, subcellular distribution of arsenic and relationship between arsenobetaine and glycine betaine concentrations were examined in the livers of these animals. There was no relationship between total arsenic concentration and its subcellular distribution in liver tissues. However, a significant negative correlation was found between arsenobetaine and glycine betaine concentrations in the liver of six species examined. This result may indicate that arsenobetaine is accumulated in these marine animals as an osmolyte along with glycine betaine, which is a predominant osmolyte in marine animals because the chemical structure and properties of arsenobetaine are similar to those of glycine betaine.  相似文献   

3.
The high concentrations of the naturally occurring arsenic compound arsenobetaine in marine animals, in comparison with freshwater animals, has led to the suggestion that salinity is a factor in its accumulation. In separate experiments, we investigated the uptake and elimination of arsenobetaine by the mussel Mytilus edulis when maintained under three salinity regimes (32, 24, and 16 practical salinity units). Both uptake and elimination of arsenobetaine depended on the salinity of the water in a manner leading to higher concentrations at the higher salinity. The data are consistent with a proposed role of arsenobetaine as an adventitiously acquired osmolyte, and readily explain field data for freshwater and marine animals.  相似文献   

4.
A novel arseno-sugar was isolated from the brown alga Sargassum thunbergii. Instead of the dimethylarsinoyl group reported for algal arseno-sugars, this has a tri-methylarsonium group, which is borne by arsenobetaine, a ubiquitous organoarsenic compound in marine animals. This may be an intermediate between arseno-sugars and arsenobetaine.  相似文献   

5.
Hanaoka  Ken'ichi  Tagawa  Shoji  Kaise  Toshikazu 《Hydrobiologia》1992,235(1):623-628
Two growth media containing arsenobetaine [(CH3)3 As+ CH2COO] were mixed with coastal marine sediments, the latter providing a source of microorganisms. The mixtures were kept at 25 °C in the dark and shaken for several weeks under an atmosphere of air. The disappearance of arsenobetaine and the appearance of two metabolites were followed by HPLC. The HPLC-retention time of the first metabolite agreed with that of trimethylarsine oxide [(CH3)3AsO]. The second metabolite was identified as arsenate (As(V)) using hydride generation/cold trap/GC MS analysis and thin layer chromatography. This is the first scientific evidence showing that arsenobetaine is degraded by microorganisms to inorganic arsenic via trimethylarsine oxide. The degradation of arsenobetaine to inorganic arsenic completes the marine arsenic cycle that begins with the methylation of inorganic arsenic on the way to arsenobetaine.  相似文献   

6.
Cytochrome P450s (also called CYPs or P450s) are a superfamily of heme-containing monooxygenases. They are distributed in all biological kingdoms. Most fungi have at least two P450-encoding genes, CYP51 and CYP61, which are housekeeping genes that play important roles in the synthesis of sterols. However, the kingdom fungi is an interesting source of numerous P450s. Here, we review reports on fungal P450s and their applications in the bioconversion and biosynthesis of chemicals. We highlight their history, availability, and versatility. We describe their involvement in hydroxylation, dealkylation, oxygenation, C═C epoxidation, C–C cleavage, C–C ring formation and expansion, C–C ring contraction, and uncommon reactions in bioconversion and/or biosynthesis pathways. The ability of P450s to catalyze these reactions makes them promising enzymes for many applications. Thus, we also discuss future prospects in this field. We hope that this review will stimulate further study and exploitation of fungal P450s for specific reactions and applications.  相似文献   

7.
  • 1.1. Arsenobetaine-containing growth media (ZoBell 2216E; solution of inorganic salts) were mixed with each of two marine macro algae, a green alga Monostroma nitidum and a brown alga Hizikia fusiforme, as a source of microorganisms.
  • 2.2. The conversion of arsenobetaine to trimethylarsine oxide and/or dimethylarsinic acid by the microorganisms associated with the marine macro algae was confirmed in both the media.
  • 3.3. A striking contrast, however, in the conversion pattern was observed between the two algae: arsenobetaine was converted to trimethylarsine oxide and trimethylarsine oxide to dimethylarsine acid successively with M. nitidum, while the reverse was observed with H. fusiforme.
  相似文献   

8.
Arsenobetaine occurs naturally in almost all marine animals and it is assumed to be the unreactive end-product of a detoxification pathway. To investigate the properties of arsenobetaine and its likely immediate biogenic precursor, dimethylarsinoylacetic acid, we studied the exchanges of the C-2 methylene protons of these compounds in D2O solution and showed them to be pH dependent first-order reactions. For arsenobetaine, the rate of exchange was highest at high pH values although exchange also occurred at low pH values. For dimethylarsinoylacetic acid, the rate was highest at low pH values although there was also exchange at high pH values. The half-life of the reaction was maximum for arsenobetaine at pH values of 5-6, and for dimethylarsinoylacetic acid at 6.5-8.5. Mechanisms are suggested for the exchange reactions involved.  相似文献   

9.
The effect of different compounds on the enzymic action of the nitrile-hydratase used for the bioconversion of nitriles was studied. An excess of acrylonitrile as a substrate was shown to inhibit the activity of the enzyme. This inhibition occurred only at relatively high substrate concentrations (0.2 mol/l or more). The nitrile bioconversion products (acrylamide, propionamide) and their structural analogues (acrylic acid, thioacetamide) were shown to inhibit the enzyme competitively. The most important inhibition found was that of cyanide (Ki= 0.004 mol/l), a break down product of some nitriles. By using an acetamidase-negative mutant, amides were shown to inhibit biosynthesis of nitrile-hydratase. An identical result was obtained with thioacetamide, a non-substrate compound for acetamidase. This compound repressed the biosynthesis of nitrile-hydratase by both the wild type and the acetamidase-negative mutant to the same extent.  相似文献   

10.
作为来源广泛、储量丰富的有机碳一气体,甲烷被认为是下一代工业生物技术中最具潜力的碳原料之一。嗜甲烷菌能够利用其体内的甲烷单加氧化酶,将甲烷作为唯一的碳源和能源进行生长和代谢,这为温室气体减排及其开发利用提供了新的策略。目前,嗜甲烷菌生物催化体系的相关研究已开展多年,随着系统生物学和合成生物学的快速发展,利用代谢工程合理改造嗜甲烷菌代谢途径以提高甲烷转化效率,已经实现了生物转化甲烷制备多种大宗化学品和生物燃料。本文详细讨论并介绍了嗜甲烷菌催化氧化甲烷的相关代谢途径、高效细胞工厂构建及部分化学品生物合成的最新研究进展,并对甲烷生物转化未来的发展方向和面临的技术挑战进行了讨论和展望。  相似文献   

11.
To investigate the reactions involved in the biosynthesis of vindoline from tabersonine, the bioconversion products formed when the latter compound was fed to cell suspension cultures of Catharanthus roseus were isolated and characterized. Two biotransformation products of tabersonine were isolated and shown to be lochnericine, which is formed by epoxidation of tabersonine at positions 14, 15, and lochnerinine, the 11-methoxylation product of lochnericine. The bioconversion ratio of the main biotransformation product, lochnericine, reached a value of 80.6% within three days.  相似文献   

12.
The metabolism of exogenous leukotriene C4 (LTC4), LTD4 and LTE4 (10(-8) M) was studied in vitro in blood of normal and asthmatic subjects for up to 2 hr by reverse-phase high performance liquid chromatography. In whole blood, incubation of LTC4 (T1/2 = 11.5 min) resulted in the formation of LTD4 and LTE4 whose biosynthesis was inhibited by serine borate (30 mM). Similar experiments performed with LTD4 (T1/2 = 5 min) produced a single metabolite (LTE4) which was inhibited by L-cysteine (10 mM). On the other hand, LTE4 represented a highly stable product in our in vitro system. The bioconversion of LTC4 or LTD4 was slower in plasma but this effect appeared more pronounced for the cysteinylglycinyl derivative. The bioconversion of LTD4 in whole blood or plasma was almost twice as rapid as LTC4. Experiments performed with asthmatic blood showed no significant difference in the survival of LTC4. These results suggest that blood may play a role in regulating the bioavailability of cysteinyl-containing LTs which could be of relevance to their excretion in man.  相似文献   

13.
Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.  相似文献   

14.
We performed combinational bioconversion of substituted naphthalenes with PhnA1A2A3A4 (an aromatic dihydroxylating dioxygenase from marine bacterium Cycloclasticus sp. strain A5) and prenyltransferase NphB (geranyltransferase from Streptomyces sp. strain CL190) or SCO7190 (dimethylallyltransferase from Streptomyces coelicolor A3(2)) to produce prenyl naphthalen-ols. Using 2-methylnaphthalene, 1-methoxynaphthalene, and 1-ethoxynaphthalene as the starting substrates, 10 novel prenyl naphthalen-ols were produced by combinational bioconversion. These novel prenyl naphthalen-ols each showed potent antioxidative activity against a rat brain homogenate model. 2-(2,3-Dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one (2',3'-dihydroxychrysin) generated with another aromatic dihydroxylating dioxygenase and subsequent dehydrogenase was also geranylated at the C-5'-carbon by the action of NphB.  相似文献   

15.
The distribution and excretion of arsenobetaine in fish were investigated using whole body autoradiography and liquid scintillation counting. A single dose of synthesised [(14)C]arsenobetaine was orally administered to Atlantic salmon, Salmo salar L., and Atlantic cod, Gadus morhua L. Arsenobetaine was distributed to most organs within both species. Nevertheless, there were species differences in tissue distribution and excretory pattern. The highest level of arsenobetaine in Atlantic salmon was present in muscle tissue, while high levels of arsenobetaine were found in both muscle and liver (including gall bladder) from Atlantic cod. The results suggest that the major route of excretion was via urine, which seemed to be more important in Atlantic cod than in Atlantic salmon. Elimination of arsenobetaine via bile appeared to be negligible in both species.  相似文献   

16.
1,4-Butanediol (BDO) biosynthesis from renewable resources is of increasing interest because of global energy and environmental problems. We have previously demonstrated the production of BDO from erythritol by whole-cell catalysis. Here, the effects of several variables on BDO production were investigated, including cell density, temperature, substrate concentration and pH. It was found that the maximum BDO production was obtained at cell density (OD600) of 30. Low temperature and weak alkaline environment were beneficial for the biotransformation. Regarding substrate concentration, 80?g/L of erythritol was found to be optimum for the bioconversion. Under the optimal conditions, the highest concentration of BDO reached 34.5?mg/L, resulting in 5.8-fold increment after optimization. These results will provide useful guidance for enhancing the bioconversion of erythritol to BDO.  相似文献   

17.
A method was developed for the large-scale bioconversion of novel 6-deoxyerythronolide B (6-dEB) analogs into erythromycin analogs. Erythromycin biosynthesis in Saccharopolyspora erythraea proceeds via the formation of a polyketide aglycone, 6-dEB, which is subsequently glycosylated, hydroxylated and methylated to yield the antibiotic erythromycin A. A modular polyketide synthase (PKS) directs 6-dEB synthesis using a dedicated set of active sites for the condensation of each of seven propionate units. Strategies based on genetic manipulation and precursor feeding are available for the efficient generation of novel 6-dEB analogs using a plasmid-based system in Streptomyces coelicolor. 6-dEB and 13-substituted 6-dEB analogs produced in this manner were fed to S. erythraea mutants which could not produce 6-dEB, yet retained their 6-dEB modification systems, and resulted in the generation of erythromycin A and 13-substituted erythromycin A analogs. Erythromycin B, C and D analogs were observed as intermediates of the process. Dissolved oxygen, temperature, the specific aglycone feed concentration, and pH were found to be important for obtaining a high yield of erythromycin A analogs. Cultivation conditions were identified which resulted in the efficient bioconversion of 6-dEB analogs into erythromycin A analogs, which this process demonstrated at the 100 l scale.  相似文献   

18.
Bacterial cysteine desulfurases: their function and mechanisms   总被引:10,自引:0,他引:10  
Cysteine desulfurase is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyzes the conversion of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. Increased evidence for the functions of cysteine desulfurases has revealed their important roles in the biosyntheses of Fe-S clusters, thiamine, thionucleosides in tRNA, biotin, lipoic acid, molybdopterin, and NAD. The enzymes are also proposed to be involved in cellular iron homeostasis and in the biosynthesis of selenoproteins. The mechanisms for sulfur mobilization mediated by cysteine desulfurases are as yet unknown, but enzymes capable of providing a variety of biosynthetic pathways for sulfur/selenium-containing biomolecules are probably applicable to the production of cofactors and the bioconversion of useful compounds.  相似文献   

19.
Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals.  相似文献   

20.
In recent years, nitrile hydratases (NHases) have drawn increasing attentions due to their critical roles in organic synthesis. In present paper, extensive investigation on the stability and activity of the NHase from Nocardia sp. 108, which is succeed in the industrial application in China, were conducted by the bioconversion of acrylonitrile to acrylamide in a batch manner. Cultivation study demonstrated that biosynthesis of NHase changed significantly with culture time, and the optimal NHase biosynthesis phase was 45 h after inoculation with NHase activity of 1209.8 U/g of biomass. Stability study indicated that crude enzyme preparation both exhibit a good stability when exposed to the pH 7.2 tris-HCl buffer at 4 degrees C for 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号