首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eustigmatos cf. polyphem is a yellow-green unicellular edaphic microalga belonging to the eustigmatophyte. The characteristics of lipids accumulation of E. cf. polyphem grown in a bubble cylindrical photobioreactor under nitrogen-limited conditions was dissected by morphological and spectrometric analyses. Total lipids accumulation rate increased rapidly at early growth phase, with the emergence of many small lipid bodies. Afterwards, lipid bodies became abundant and enlarged primarily because of the progressive accumulation of lipids and the fusion of nearby lipid bodies. Maximum total lipids and neutral lipids content reached up to 60.59 % and 53.08 % of cell dry weight, accompanied with a biomass dry weight 7.9 g/l. E. cf. polyphem is thus referred to as an oleaginous microalga for biodiesel production due to its high biomass and considerable production of oils.  相似文献   

2.
Photosynthetic carbon partitioning into starch and neutral lipid was investigated in the oleaginous green microalga Pseudochlorococcum sp. When grown under low light and nitrogen-replete conditions, the algal cells possessed a basal level of starch. When grown under high light and nitrogen-limited conditions, starch synthesis was transiently up-regulated. After nitrogen depletion, starch content decreased while neutral lipid rapidly increased to 52.1% of cell dry weight, with a maximum neutral lipid productivity of 0.35 g L−1 D−1. These results suggest that Pseudochlorococcum used starch as a primary carbon and energy storage product. As nitrogen was depleted for an extended period of time, cells shift the carbon partitioning into neutral lipid as a secondary storage product. Partial inhibition of starch synthesis and degradation enzymes resulted in a decrease in neutral lipid content, indicating that conversion of starch to neutral lipid may contribute to overall neutral lipid accumulation. Biotechnological application of Pseudochlorococcum sp. as a production strain for biofuel was assessed.  相似文献   

3.
A comparison was made of epicuticular lipid accumulation on leaves of Lycopersicon pennellii and Lycopersicon esculentum Mill. cv VF36 from 5 to 16 weeks of age. Epicuticular lipids were a small fraction of the leaf dry weight (0.16%) of 5-week-old `VF36', and increased to only 0.96% of the leaf dry weight after an additional 12 weeks of growth. In contrast, leaves from 5-week-old and 17-week-old L. pennellii plants had, respectively, 0.94% and 19.9% of their total dry weight in epicuticular lipid. Lipid accumulation was not affected by drought stress. Leaf position appears to influence the amount of lipid on the leaf surface. A glycolipid appears to be exuded from the terminal cell of glandular trichomes found on the leaves, stems, peduncles, calyxes, and fruits of L. pennellii.  相似文献   

4.
Pathogenicity of eight Bacillus strains to seedlings of four cotton cultivars was evaluated under greenhouse conditions. Each of the tested cultivars was individually treated with powdered inoculum of each bacterial strain. Untreated seeds were planted as control treatments in autoclaved soil. Effects of the tested strains on levels and activities of some biochemical components of the infected seedlings were also assayed. The biochemical components included total soluble sugars, total soluble proteins, total free amino acids, peroxidase, polyphenol oxidase, phenols, and lipid peroxidation. ANOVA showed that Bacillus strain (B) was a very highly significant source of variation in damping-off and dry weight. Cotton cultivar (V) was a nonsignificant source of variation in damping-off while it was a significant source of variation in dry weight. B × V interaction was a significant source of variation in damping- off and a nonsignificant source of variation in dry weight. Bacillus strain was the most important source of variation as it accounted for 59.36 and 64.99% of the explained (model) variation in damping-off and dry weight, respectively. The lack of significant correlation between levels and activities of the assayed biochemical components and incidence of damping-off clearly demonstrated that these biochemical components were not involved in the pathogenicity of the tested strains. Therefore, it was hypothesized that the pathogenicity of the tested strains could be due to the effect of cell wall degrading enzymes of pathogenic toxins. Based on the results of the present study, Bacillus strains should be considered in studying the etiology of cotton seedling damping-off.  相似文献   

5.
Two species of Copepoda Temora longicornis (Müller) and Pseudocalanus elongatus (Boeck) were cultured continuously in the laboratory. Four and three generations, respectively, were raised at 16 different combinations of temperature and food concentration. Prosome length and ash-free dry weight were measured in the adult stage and in Pseudocalanus also in copepodite stage I, and the relation between length and weight was established. In Pseudocalanus also the relative amount of lipid was estimated.Prosome length and length-specific body weight (condition factor) were positively correlated with food concentration. Lipid content in Pseudocalanus was also strongly affected by the concentration of food.Prosome length was negatively correlated with temperature. However, length-specific body weight in Temora was positively correlated with temperature. Therefore, at higher temperature Temora was smaller, but heavier per unit body length. In Pseudocalanus a similar but less significant influence of temperature on length-specific weight was found; lipid content was not significantly influenced by the temperature.Females of Temora had larger length-specific weights than males. In Pseudocalanus the opposite was found, coinciding with a higher lipid content in males than in females.It is discussed that at natural concentrations of phytoplankton body size and weight of copepods are reduced in the North Sea during the major part of the growing-season.  相似文献   

6.
Periphyton development was studied on microscopic glass slides and leaves of Zostera noltii Hornem. in an intertidal area in the Banc d'Arguin (Mauritania). The effects of shading, tidal depth and grazing activities by the fiddler crab Uca tangeri Eydoux were evaluated. For all experiments, periphyton ash content was high (52–93%) and ash-free dry weight ranged between 0.10–0.63 mg cm–2. Slides accumulated more periphyton than leaves.Artificial shading (62–99%) for 13 days had no effect on periphyton densities on leaves. Increased tidal depth resulted in higher ash-free dry weight on slides, but in lower ash-free dry weight on leaves. Significant variation along the coastline also existed. The effect of fiddler crabs was studied using exclosures. Presence of fiddler crabs reduced periphyton density on slides, whereas light transmittance was increased. On leaves, no significant fiddler crab effect was found. This difference between leaves and slides was probably caused by a storm at the day before the end of the experiment, and by the higher periphyton density on slides as compared with leaves. As visual inspection during the experiment showed clear differences in appearance of leaves inside and outside the exclosures, the storm probably sloughed off mainly the older leaves, i.e. those on which the differences in periphyton cover were the highest.It is hypothesized that periphyton accumulation is higher with increased tidal depth, whereas fiddler crab grazing pressure also increases in this direction. The result is a decreased periphyton density with increased tidal depth.The presently found light extinction coefficients (mean 0.8 m–1) and periphyton light attenuance (up to 25%) in Banc d'Arguin are not likely to affect seagrass leaf growth.  相似文献   

7.
In the present report, crude glycerol, waste discharged from bio‐diesel production, was used as carbon substrate for three natural Yarrowia lipolytica strains (LFMB 19, LFMB 20 and ACA‐YC 5033) during growth in nitrogen‐limited submerged shake‐flask experiments. In media with initial glycerol concentration of 30 g/L, all strains presented satisfactory microbial growth and complete glycerol uptake. Although culture conditions favored the secretion of citric acid (and potentially the accumulation of storage lipid), for the strains LFMB 19 and LFMB 20, polyol mannitol was the principal metabolic product synthesized (maximum quantity 6.0 g/L, yield 0.20–0.26 g per g of glycerol consumed). The above strains produced small quantities of lipids and citric acid. In contrast, Y. lipolytica ACA‐YC 5033 produced simultaneously higher quantities of lipid and citric acid and was further grown on crude glycerol in nitrogen‐limited experiments, with constant nitrogen and increasing glycerol concentrations (70–120 g/L). Citric acid and lipid concentrations increased with increment of glycerol; maximum total citric acid 50.1 g/L was produced (yield 0.44 g per g of glycerol) while simultaneously 2.0 g/L of fat were accumulated inside the cells (0.31 g of lipid per g of dry weight). Cellular lipids were mainly composed of neutral fraction, the concentration of which substantially increased with time. Moreover, in any case, the phospholipid fraction was more unsaturated compared with total and neutral lipids, while at the early growth step, microbial lipid was more rich in saturated fatty acids (e.g. C16:0 and C18:0) compared with the stationary phase.  相似文献   

8.
Summary Hyperia galba was collected in the waters around Helgoland and in the Weser-Elbe-estuary during autumn. Its mode of life is a temporary but obligatory parasitism. The basal biochemical composition of the adults was analyzed in detail and related to the fresh, dry, and ash-free dry weight as well as sex and body length. Hyperia galba (males/females) consists of 85/86% water; the dry matter contains approximately 64/61% protein, 10/11% lipid, 1.2/1.5% carbohydrate, 10/8% chitin, and 23/23% ash. The analyses of basal elemental composition yielded approximately 38% C, 9% N and 6% H. Under natural conditions, individuals may encounter at least two periods of food shortage during their lives. Therefore, the analyses were carried out on individuals of different developmental stages also under food deprivation. The data are discussed with respect to the special mode of life of the species and compared with those found by other authors in several related crustacean species.Abbreviations AFDW ash-free dry weight - BL body length - DW dry weight - SD standard deviation - WW wet weight  相似文献   

9.
Lipids created via microbial biosynthesis are a potential raw material to replace plant-based oil for biodiesel production. Oleaginous microbial species currently available are capable of accumulating high amount of lipids in their cell biomass, but rarely can directly utilize lignocellulosic biomass as substrates. Thus this research focused on the screening and selection of new fungal strains that generate both lipids and hydrolytic enzymes. To search for oleaginous fungal strains in the soybean plant, endophytic fungi and fungi close to the plant roots were studied as a microbial source. Among 33 endophytic fungal isolates screened from the soybean plant, 13 have high lipid content (>20 % dry biomass weight); among 38 fungal isolates screened from the soil surrounding the soybean roots, 14 have high lipid content. Also, five fungal isolates with both high lipid content and promising biomass production were selected for further studies on their cell growth, oil accumulation, lipid content and profile, utilization of various carbon sources, and cellulase production. The results indicate that most strains could utilize different types of carbon sources and some strains accumulated >40 % of the lipids based on the dry cell biomass weight. Among these promising strains, some Fusarium strains specifically showed considerable production of cellulase, which offers great potential for biodiesel production by directly utilizing inexpensive lignocellulosic material as feedstock.  相似文献   

10.
Growth and cesium accumulation characteristics of two cesium-accumulating bacteria isolated from soils were investigated. Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402 accumulated high levels of cesium (approximately 690 and 380 μmol/g [dry weight] of cells or 92 and 52 mg/g [dry weight] of cells, respectively) after 24 h of incubation in the presence of 0.5 mM cesium. The optimum pH for cesium uptake by both Rhodococcus strains was 8.5. Rubidium and cesium assumed part of the role of potassium in the growth of both Rhodococcus strains. Potassium and rubidium inhibited cesium accumulation by these Rhodococcus strains. It is likely that both Rhodococcus strains accumulated cesium through a potassium transport system.  相似文献   

11.
Both saline and alkaline conditions frequently coexist in nature; however, little is known about the effects of alkaline and salt?Calkaline stresses on plants. We performed pot experiments with four treatments, control without salt addition and three stress conditions??neutral, alkaline, and mixed salt?Calkaline??to determine their effects on growth, nutrient accumulation and root architecture in the glycophytic species Lotus tenuis. Neutral and alkaline salts produced a similar detrimental effect on L. tenuis growth, whereas the effect of their combination was synergistic. Neutral salt addition, alone or mixed with NaHCO3, led to significant leaf Na+ build up and reduced K+ concentration. In contrast, in plants treated with NaHCO3 only, Na+ levels and the Na+/K+ ratio remained relatively unchanged. Proline accumulation was not affected by the high pH in the absence of NaCl, but it was raised by the neutral salt and mixed treatments. The total root length was reduced by the addition of NaCl alone, whereas it was not affected by alkalinity, regardless of the presence of NaCl. The topological trend showed that alkalinity alone or mixed with NaCl turned the root more herringbone compared with control roots, whereas no significant change in this index was observed in the treatment with the neutral salt only. The pattern of morphological changes in L. tenuis root architecture after the alkaline treatment (in the absence of NaCl) was similar to that found in the mixed salt?Calkaline treatment and different from that observed in neutral salt. A unique root morphological response to the mixed salt?Calkaline stress was the reduction in the ratio between xylem vessels and root cross-sectional areas.  相似文献   

12.
Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.  相似文献   

13.
Natural saline lakes in Western Australia were sampled for microalgae species and strains with potential for large-scale outdoor cultivation over a wide range of salinities for biofuels production. Using a rational isolation and screening process, several Tetraselmis strains (Chlorophyta, Chlorodendrales) with a broad range of salinity tolerance were identified and were characterised further for their potential for biofuels production. Specific growth rates increased from 0.8 to 1.2 days?1 when the medium salinity was decreased from 11 to 3 % (w/v) NaCl (1.88 to 0.51 M NaCl) in batch cultivation mode, thereby indicating quick adaptation to large salinity changes. In general, ash-free dry weight (AFDW), total lipid, protein and carbohydrate contents per cell were highest in the early stages of growth. Salinity increases led to an increase in cell AFDW, with the highest mean maximum of 2555?±?659 pg AFDW.cell?1 at 11 % (w/v) NaCl in the strains Tetraselmis MUR 167 and MUR 219 which had been in culture for many years, as compared to the mean maximum of 981?±?141 pg AFDW.cell?1 the in newly isolated strains MUR 230, 231, 232 and 233. Similar observations on total lipid, protein and carbohydrate content per cell were made between the two groups of strains. Overall, all strains yielded high biomass and total lipid productivities over a very wide range of salinities without large variation in their gross biochemical composition and growth pattern. Based on AFDW and total lipid productivity data, the order of preference for selecting strains for further investigation for large-scale culture was MUR 231?>?MUR 233?>?MUR 219?>?MUR 230?>?MUR 232?>?MUR 167. The Tetraselmis spp. were also very competitive as shown by the outdoor cultivation of diatom, Halamphora coffeaeformis MUR 158, in parallel with Tetraselmis sp. MUR 167 which resulted in the diatom being outcompeted by the green alga. Our results demonstrate the high commercial potential of euryhaline Tetraselmis spp. for cultivation over a broad range of salinity in outdoor cultures.  相似文献   

14.
The genome of a high lipid-producing fungus Mucor circinelloides WJ11 (36% w/w lipid, cell dry weight, CDW) was sequenced and compared with that of the low lipid-producing strain, CBS 277.49 (15% w/w lipid, CDW), which had been sequenced by Joint Genome Institute. The WJ11 genome assembly size was 35.4 Mb with a G+C content of 39.7%. The general features of WJ11 and CBS 277.49 indicated that they have close similarity at the level of gene order and gene identity. Whole genome alignments with MAUVE revealed the presence of numerous blocks of homologous regions and MUMmer analysis showed that the genomes of these two strains were mostly co-linear. The central carbon and lipid metabolism pathways of these two strains were reconstructed and the numbers of genes encoding the enzymes related to lipid accumulation were compared. Many unique genes coding for proteins involved in cell growth, carbohydrate metabolism and lipid metabolism were identified for each strain. In conclusion, our study on the genome sequence of WJ11 and the comparative genomic analysis between WJ11 and CBS 277.49 elucidated the general features of the genome and the potential mechanism of high lipid accumulation in strain WJ11 at the genomic level. The different numbers of genes and unique genes involved in lipid accumulation may play a role in the high oleaginicity of strain WJ11.  相似文献   

15.
Thirty Chlorella and 30 Scenedesmus strains grown in nitrogen-stressed conditions (70 mg L?1 N) were analyzed for biomass accumulation, lipid productivity, protein, and fatty acid (FA) composition. Scenedesmus strains produced more biomass (4.02?±?0.73 g L?1) after 14 days in culture compared to Chlorella strains (2.57?±?0.12 g L?1). Protein content decreased and lipid content increased from days 8 to 14 with an increase in triacylglycerol (TAG) accumulation in most strains. By day 14, Scenedesmus strains generally had higher lipid productivity (53.5?±?3.7 mg lipid L?1 day?1) than Chlorella strains (35.1?±?2.8 mg lipid L?1 day?1) with the lipids consisting mainly of C16–18 TAGs. Scenedesmus strains generally had a more suitable FA profile with higher amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs) and a smaller polyunsaturated fatty acid (PUFA) component. Chlorella strains had a larger PUFA component and smaller MUFA component. The general trend in the FA composition of Chlorella strains was oleic > palmitic > α-linolenic = linoleic > eicosenoic > heptadecenoic > stearic acid. For Scenedesmus strains, the general trend was oleic > palmitic > linoleic > α-linolenic > stearic > eicosenoic > palmitoleic > heptadecenoic acid. The most promising strains with the highest lipid productivity and most suitable FA profiles were Scenedesmus sp. MACC 401, Scenedesmus soli MACC 721, and Scenedesmus ecornis MACC 714. Although Chlorella sp. MACC 519 had lower lipid productivity, the FA profile was good with a lower PUFA component compared to the other Chlorella strains analyzed and a low linolenic acid concentration.  相似文献   

16.
Summary Caloric content for 15 evergreen sclerophyllous and 8 deciduous plants dominating maquis ecosystems are presented on dry and ash-free dry weight basis. Leaves of evergreen sclerophylls contain 4,667±61, bark 4,207±78 and wood 4,250±37 cal.g-1 d.w. On ash-free basis values are: 5,959±57, 4,560±71 and 4,325±32 cal.g-1 ash-free d.w., respectively. On deciduous plants results show that leaves, bark and wood contain 4,375±47, 4,128±151 and 4,278±59 cal.g-1 d.w. respectively. Values on ash-free dry weight are: 4,719±39, 4,529±124 and 4,371±67 cal.g-1 ash-free d.w.  相似文献   

17.
  • 1.1. The organic composition of the body tissues of eight species of deep-sea aspidochirotid holothurian, collected between 500 and 4100m depth in the NE Atlantic Ocean, was obtained by the biochemical analysis of protein, lipid, carbohydrate and % ash.
  • 2.2. The major organic class was protein with soluble lipid the major soluble fraction in the ovary. Carbohydrate values were consistently low.
  • 3.3. The calorific value was significantly higher in the ovary than in the other tissues.
  • 4.4. The total body calorific content for two selected species, Benthothuria funebris and Mesothuria lactea, was 25.62 and 26.24J/mg ash-free dry weight (AFDW).
  相似文献   

18.
The capacity of Azospirillum brasilense to enhance the accumulation of K+, P, Ca2+, Mg2+, S, Na+, Mn2+, Fe2+, B, Cu2+, and Zn2+ in inoculated wheat and soybean plants was evaluated by using two different analytical methods with five A. brasilense strains originating from four distinct geographical regions. A Pseudomonas isolate from the rhizosphere of Zea mays seedlings was included as a control. All A. brasilense strains significantly improved wheat and soybean growth by increasing root and shoot dry weight and root surface area. The degree of plant response to inoculation varied among the different strains of A. brasilense. All strains were capable of colonizing roots, but the best root colonizer, Pseudomonas sp., had no effect on plant growth. The numbers of organisms of Brazilian strains Sp-245 and Sp-246 colonizing roots were similar regardless of the host plant. Numbers of organisms for the other strains were directly dependent on the host plant. The main feature characterizing mineral accumulation in inoculated plants was that all inoculation treatments changed the mineral balance of the plants, but in an inconsistent manner. Enhancement of mineral uptake by plants also varied among strains to a great extent and was directly dependent on the strain-plant combination; i.e., a strain capable of increasing accumulation of a particular ion in one plant species or cultivar often lacked the ability to do so in another. Minerals in inoculated plants were not evenly distributed in different plant tissues, and the changes varied among groups of plants within each bacterial strain inoculation treatment. We suggest that, although A. brasilense strains are capable of changing the mineral balance and content of plants, it is unlikely that this ability is a general mechanism responsible for plant improvement by A. brasilense.  相似文献   

19.
The paper discusses seasonal variation in the energy contents of four macrobenthic invertebrates of Lake Nainital during 1977–78. The energy values varied from 16971–19437 J/g dry weight in Tubifex tubifex, 16 511–20 231 J/g dry weight in Glossiphonia weberi, 19 019–25 289 J/g dry weight in Chironomus plumosus and 19 583–20 549 J/g dry weight in Viviparus bengalensis. The former two genera exhibited highest energy contents during summer, whereas the latter two revealed highest values during winter. On mean annual basis, the highest values were recorded for C. plumosus and lowest for T. tubifex. In V. bengalensis, variation occurred in ash fraction (%) and in energy values (Joule per gram dry weight) but not in energy values of organic fraction (Joule per gram ash-free dry weight), while the other three genera displayed variation in all three variables.  相似文献   

20.
Silicon deficiency is a lipid-promoting stress for many oleaginous diatoms. Literature reports suggest that reduced salinity in seawater, a primary component of which is sodium chloride, may inhibit metabolism of silicon in marine diatoms. We hypothesized that lowering sodium chloride below ocean levels may thus be effective in creating silicon stress and enhancing lipid productivity. We examined the interacting effects of silicon supply (0.05, 0.1, 0.2, and 0.8 mM) and sodium chloride concentration (50, 100, and 400 mM) on growth and lipid production in Chaetoceros gracilis. This was done in batch culture to facilitate the application of severe stress. Low levels of either sodium chloride or silicon resulted in at least 50 % increases in lipid content. The synergy of simultaneous, moderate sodium chloride and silicon stress resulted in lipid content up to 73 % of dry mass and lipid productivity of 1.7 g m?2 day?1; with a daily integrated photosynthetic photon flux of 17.3 mol photons m?2 day?1, the efficiency of lipid synthesis was thus 0.1 g mol?1 of photons. Decreased silicon also resulted in a 5 % shift in lipid chain length from C18 to C16 fatty acids. We observed a strong sodium chloride/silicon interaction on total and ash-free dry mass densities that arose because low sodium chloride concentrations were inhibitory to growth, but the inhibition was overcome with excessive silicon supply. This observation suggests that low levels of sodium chloride may have affected metabolism of silicon. The findings of this study can be used to enhance lipid production in oleaginous marine diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号