首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
耐有机溶剂微生物在生物燃料生产、全细胞催化、酶制剂的开发和生物修复等领域具有非常重要的作用。该文简要介绍了耐有机溶剂微生物及其耐受机制,并从基因过表达、基因敲除和全局转录机制三个方面总结了增强微生物有机溶剂耐受性的方法。通过对耐有机溶剂微生物应用的局限性进行分析,认为未来研究中应注重将微生物耐受表型和具体利用相结合,达到有机溶剂耐受和实际产出的最佳平衡状态,为耐有机溶剂工程菌的改造和选育提供参考。  相似文献   

2.
耐有机溶剂微生物在生物燃料生产、全细胞催化、酶制剂的开发和生物修复等领域具有非常重要的作用。该文简要介绍了耐有机溶剂微生物及其耐受机制,并从基因过表达、基因敲除和全局转录机制三个方面总结了增强微生物有机溶剂耐受性的方法。通过对耐有机溶剂微生物应用的局限性进行分析,认为未来研究中应注重将微生物耐受表型和具体利用相结合,达到有机溶剂耐受和实际产出的最佳平衡状态,为耐有机溶剂工程菌的改造和选育提供参考。  相似文献   

3.
细菌的有机溶剂耐受机制   总被引:3,自引:0,他引:3  
有机溶剂有严重破坏微生物正常生理功能的毒害作用,但是研究工作者发现有些细菌能够在较高有机溶剂浓度下依赖独特的耐受机制得以生存,这种机制的发现大大鼓舞了工业菌尤其是溶剂生产菌和毒性有机物降解菌的工业适应性改造研究。以下概述了有机溶剂对细胞毒性作用机制,并在根据参数logP衡量不同溶剂对细胞的毒性程度的基础上,重点总结了溶剂耐受菌耐受有机溶剂的机制,即膜上顺反异构、增加饱和脂肪酸的比率、改变极性头部、外膜的生理变化、细胞的形态变化、胞内溶剂的降解和泵出等,结合本课题组在筛选溶剂耐受菌株和提高现有菌株溶剂耐受性研究方面的经验,希望对重要工业微生物溶剂耐受相关的生理功能进行更深入地研究,提高微生物的工业适应性。  相似文献   

4.
有机溶剂耐受菌的研究进展   总被引:1,自引:0,他引:1  
有机溶剂耐受菌是一类新的能与有害影响因素竞争并能在有机溶剂中茁壮生长的微生物。介绍了有机溶剂对细菌的毒性机理,有机溶剂耐受菌的获得方法,讨论了有机溶剂耐受菌的两种反应形式,并对有机溶剂耐受菌的应用进行了展望。  相似文献   

5.
随着全球变暖和能源危机日益加剧,生物丁醇因能用作清洁能源和重要化学品而备受关注。大肠杆菌(Escherichia coli)由于具有优良的遗传操作性能成为丁醇生产的底盘菌,但丁醇对细胞的毒害作用已成为提高工程菌丁醇产量的瓶颈,因而增强E.coli丁醇耐受性是提高工程菌丁醇产量的必要前提。为此,需要详细了解E.coli丁醇耐受机制。丁醇可破坏细胞膜的屏障作用、扰乱物质转运和传递功能,细胞产生与热激、渗透等胁迫类似的生理应答反应,通过转录与翻译调节应答丁醇胁迫。从上述几个方面综述了E.coli丁醇耐受机制,并总结了运用基因工程理性设计获得丁醇耐受菌株的研究进展。然而目前丁醇耐受机制尚未完全揭示,限制了理性设计策略的应用,因此概括了运用定向进化获得耐受丁醇菌株并解析丁醇耐受功能基因的反向代谢工程策略在此方面的研究进展。同时也关注和评述了最新的组合策略、化学修饰方法提高E.coli丁醇耐受性的研究。最后总结和展望了提高底盘菌株E.coli丁醇耐受性的关键策略。  相似文献   

6.
丁醇作为一种重要的大宗化学品具有广泛的用途,同时又是一种潜在的生物燃料。随着能源与环境危机的日益加重,利用可再生原料通过微生物法生产丁醇受到全世界的普遍关注。代谢工程为定向改造微生物生产丁醇提供了有力的工具。通过改造经典的丙酮丁醇发酵和定向改造模式微生物生产丁醇是生物丁醇研究的两个重要方向。笔者从代谢工程改造的角度评述近5年来生物丁醇研究的进展,同时讨论了生物丁醇研究中需要着力解决的问题。  相似文献   

7.
生物乙醇作为一种可再生的清洁能源,正在引起人们的广泛关注.酿酒酵母是乙醇生产中最常用的发酵菌株,但是乙醇耐受性往往成为限制酿酒酵母菌乙醇产量的重要因素.选育耐受高浓度乙醇的酵母菌株对于提高乙醇产率具有重要意义.然而传统的菌株改良方法具有育种周期长,突变方向不定等缺点.主要综述了近年来国内外对酿酒酵母菌耐受乙醇的分子生物学机理方面的研究成果,进而总结了提高酿酒酵母乙醇耐受性的基因工程、代谢工程.  相似文献   

8.
生物丁醇制造技术现状和展望   总被引:6,自引:0,他引:6  
丁醇是大宗基础化工原料,并有望成为新一代生物燃料。利用可再生原料通过微生物发酵生产丁醇受到人们的很大关注。然而,与石油原料制造丁醇相比,目前生物丁醇的制造成本偏高。生物丁醇制造技术按重要性排序:在廉价原料替代、低丁醇浓度及存在丙酮、乙醇低值副产物3个方面有改进空间。上海生物丁醇协作组设定了由易到难的技术路线图:通过代谢工程提高丁醇比例;在丁醇高耐受菌株中导入和优化丁醇合成途径;去除葡萄糖阻遏效应使之可利用复杂原料。协作组相信,通过与国内外广泛的产学研合作,应可在不远的将来开发出有经济竞争力并可持续发展的生物丁醇生产工艺。  相似文献   

9.
随着化石燃料的逐年减少,以生物质为原料的生物能源研究近年来成为能源领域的研究热点,充分利用可再生生物质为发展经济的生物燃料生产工艺提供了一个极好的机会。与燃料乙醇和生物柴油相比,生物丁醇更具有优越性,以可再生木质纤维素生物质为原料进行发酵生产丁醇在近年来被广泛的研究。对于利用可再生生物质为原料生产丁醇,需要解决原料的选择、产品收率低、抑制物对生产菌株毒性等问题。本文对以木质纤维素生物质为原料进行生物丁醇发酵过程中的原料预处理、抑制物对丁醇生产菌的影响,以及水解液的脱毒和耐抑制物菌株的选育等方面进行综述,并对以木质纤维素生产燃料丁醇所面临的机遇与问题进行了简要评述。  相似文献   

10.
一体化生物加工过程 (Consolidated bioprocessing,CBP) 是在一个生物反应器中完成水解酶生产、酶解、微生物发酵等多步生物过程的工艺。因其过程步骤简单、成本低,被认为是生产二代生物燃料最具发展前景的工艺。然而,由于木质纤维素降解与丁醇合成路径的复杂性,鲜有天然微生物可以直接利用木质纤维素合成丁醇。随着合成生物学技术的发展,在纤维素降解梭菌中引入丁醇合成途径,可以使单菌利用木质纤维素直接合成丁醇。但是该策略存在菌株代谢负荷重、丁醇产量低等问题。而混菌策略可以通过不同菌株的劳动分工,使单菌代谢负担得到缓解,因此进一步提高了丁醇合成效率。文中从单菌策略和混菌策略分析了近年来一体化生物加工过程利用木质纤维素合成丁醇的相关研究进展,为生物丁醇以及其他生物燃料的一体化生物加工过程研究提供借鉴。  相似文献   

11.
Anaerobic bacteria such as the solventogenic clostridia can ferment a wide range of carbon sources (e.g., glucose, galactose, cellobiose, mannose, xylose, and arabinose) to produce carboxylic acids (acetic and butyric) and solvents such as acetone, butanol, and ethanol (ABE). The fermentation process typically proceeds in two phases (acidogenic and solventogenic) in a batch mode. Poor solvent resistance by the solventogenic clostridia and other fermenting microorganisms is a major limiting factor in the profitability of ABE production by fermentation. The toxic effect of solvents, especially butanol, limits the concentration of these solvents in the fermentation broth, limiting solvent yields and adding to the cost of solvent recovery from dilute solutions. The accepted dogma is that toxicity in the ABE fermentation is due to chaotropic effects of butanol on the cell membranes of the fermenting microorganisms, which poses a challenge for the biotechnological whole-cell bio-production of butanol. This mini-review is focused on (1) the effects of solvents on inhibition of cell metabolism (nutrient transport, ion transport, and energy metabolism); (2) cell membrane fluidity, death, and solvent tolerance associated with the ability of cells to tolerate high concentrations of solvents without significant loss of cell function; and (3) strategies for overcoming poor solvent resistance in acetone and butanol-producing microorganisms.  相似文献   

12.
利用微生物发酵进行能源物质的生产是开发新型可再生能源的重要手段。在工业化生产过程中,由于高温、渗透压及产物毒性效应等不良环境因素,常导致生产菌株的多种重要生理功能发生改变,从而降低产物转化效率。因此,获取高产及抗逆性强的优良菌株是提高生物燃料工业化进程的重要途径之一。本文以乙醇与丁醇生产菌株为研究对象,系统阐述当前提高生产菌株发酵性能的各种育种手段,并对其在工业化生产过程中所面临的机遇与挑战进行简要评述。  相似文献   

13.
Gu Y  Jiang Y  Wu H  Liu X  Li Z  Li J  Xiao H  Shen Z  Dong H  Yang Y  Li Y  Jiang W  Yang S 《Biotechnology journal》2011,6(11):1348-1357
Butanol is an important solvent and transport fuel additive, and can be produced by microbial fermentation. Attempts to generate a superior microbial producer of butanol have been made through different metabolic engineering strategies. However, to date, butanol bio-production is still not economically competitive compared to petrochemical-derived production because of its major drawbacks, such as, high cost of the feedstocks, low butanol concentration in the fermentation broth and the co-production of low-value by-products acetone and ethanol. Here we analyze the main bottlenecks in microbial butanol production and summarize relevant advances from recently reported studies. Further needs and directions for developing real industrially applicable strains in butanol production are also discussed.  相似文献   

14.
With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone–butanol–ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.  相似文献   

15.
Highly butanol‐tolerant strains have always been attractive because of their potential as microbial hosts for butanol production. However, due to the amphiphilic nature of 1‐butanol as a solvent, the relationship between the cell surface hydrophobicity and butanol resistance remained ambiguous to date. In this work, the quantitatively estimated cell surface hydrophobicity of 74 Lactic acid bacteria strains were juxtaposed to their tolerance to various butanol concentrations. The obtained results revealed that the strains’ hydrophobicity was inversely proportional to their butanol tolerance. All highly butanol‐resistant strains were hydrophilic (cell surface hydrophobicity<1%), whereas the more hydrophobic the strains were, the more sensitive to butanol they were. Furthermore, cultivation at increasing butanol concentrations showed a clear tendency to decrease the level of hydrophobicity in all tested organisms, thus suggesting possible adaptation mechanisms. Purposeful reduction of cell surface hydrophobicity (by removal of S‐layer proteins from the cell envelope) also led to an increase of butanol resistance. Since the results covered 23 different Lactic acid bacteria species of seven genera, it could be concluded that regardless of the species, the lower degree of cells’ hydrophobicity clearly correlates with the higher level of butanol tolerance.  相似文献   

16.
【目的】从陕西省石泉县玉米地土壤中分离获得一株产丁醇菌株并提高其丁醇耐受性和丁醇产量。【方法】采用自行设计的多因子复合筛选方法和丁醇胁迫驯化处理,在获得丁醇高产菌株的同时提高菌株的丁醇耐受性。【结果】野生菌株D64经多轮次丁醇胁迫驯化处理和多因子复合筛选,分离获得突变株T64,其丁醇耐受性明显提高,能在丁醇浓度为20 g/L的复合筛选培养基上正常生长,发酵7%玉米醪丁醇产量由13.35 g/L提高到15.18 g/L,总溶剂(丙酮、丁醇、乙醇)达到21.8 g/L。【结论】采用长时间且丁醇浓度呈梯度渐进增加的胁迫驯化方式,可使菌种在丁醇的环境中不断进化并有效地提高菌株对丁醇的耐受性。多因子复合筛选方法较其他单一因子筛选方法更为有效,能较快获得丁醇高产菌。  相似文献   

17.
ABSTRACT: BACKGROUND: Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum, Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of constitutive thl promoter. RESULTS: The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach led to the complete conversion of acetone into isopropanol, achieving a total alcohol titer of 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. CONCLUSIONS: The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 thus can be considered as a good host for further engineering of solvent/alcohol production.  相似文献   

18.
Two metabolic engineering tools, namely gene inactivation and gene overexpression, were employed to examine the effects of two genetic modifications on the fermentation characteristics of Clostridium acetobutylicum. Inactivation of the butyrate kinase gene (buk) was examined using strain PJC4BK, while the combined effect of buk inactivation and overexpression of the aad gene-encoding the alcohol aldehyde dehydrogense (AAD) used in butanol formation-was examined using strain PJC4BK(pTAAD). The two strains were characterized in controlled pH > or = 5.0 fermentations, and by a recently enhanced method of metabolic flux analysis. Strain PJC4BK was previously genetically characterized, and fermentation experiments at pH > or = 5.5 demonstrated good, but not exceptional, solvent-production capabilities. Here, we show that this strain is a solvent superproducer in pH > or = 5.0 fermentations producing 225 mM (16.7 g/L) of butanol, 76 mM of acetone (4.4 g/L), and 57 mM (2.6 g/L) of ethanol. Strain PJC4BK(pTAAD) produced similar amounts of butanol and acetone but 98 mM (4.5 g/L) of ethanol. Both strains overcame the 180 mM (13 g/L) butanol toxicity limit, without any selection for butanol tolerance. Work with strain PJC4BK(pTAAD) is the first reported use of dual antibiotic selection in C. acetobutylicum. One antibiotic was used for selection of strain PJC4BK while the second antibiotic selected for the pTAAD presence. Overexpression of aad from pTAAD resulted in increased ethanol production but did not increase butanol titers, thus indicating that AAD did not limit butanol production under these fermentation conditions. Metabolic flux analysis showed a decrease in butyrate formation fluxes by up to 75% and an increase in acetate formation fluxes of up to 100% during early growth. The mean specific butanol and ethanol formation fluxes increased significantly in these recombinant strains, up to 300% and 400%, respectively. Onset of solvent production occurred during the exponential-growth phase when the culture optical density was very low and when total and undissociated butyric acid levels were <1 mM. Butyrate levels were low throughout all fermentations, never exceeding 20 mM. Thus, threshold butyrate concentrations are not necessary for solvent production in these stains, suggesting the need for a new phenomenological model to explain solvent formation.  相似文献   

19.
20.
产丁醇芽孢杆菌的分离、筛选与鉴定   总被引:3,自引:0,他引:3  
通过富集培养和分离纯化等过程,从种植怀地黄的土壤中分离得到一株产丁醇兼性厌氧细菌菌株C2。以7%的玉米醪液为原料总溶剂(丙酮、丁醇、乙醇,ABE)产量可达17.17g/L,其中丁醇11.2g/L,占65.2%;发酵玉米秸秆糖化液(总糖浓度为25g/L)产总溶剂量为3.64g/L,其中丁醇2.63g/L,占72.3%。形态学、生理生化及系统发育研究表明该菌株为革兰氏阳性芽孢杆菌(Bacillus),与B.vallismortis、B.atrophaeus和B.mojavensis亲缘关系最近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号