首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
【背景】由茄链格孢(Alternaria solani)引起的马铃薯早疫病被普遍认为是马铃薯生产上的第二大叶部病害,在马铃薯各产区普遍发生,给马铃薯生产造成了巨大的经济损失。【目的】明确AsSlt2基因对茄链格孢细胞壁完整性的影响。【方法】在含有刚果红、细胞壁降解酶和十二烷基硫酸钠(sodiumdodecylsulfate,SDS)等细胞壁胁迫的培养基上观察ΔAsSlt2缺失突变株的生长情况,计算相对生长抑制率;通过实时荧光定量PCR (RT-qPCR)方法检测ΔAsSlt2菌株中细胞壁合成相关基因的表达情况;进一步检测ΔAsSlt2细胞壁中几丁质的含量及胞外酶活性。【结果】ΔAsSlt2缺失突变株对SDS、刚果红、细胞壁降解酶等细胞壁胁迫的敏感性增强,在加入细胞壁降解酶后突变株原生质体释放量显著增多;ΔAsSlt2对外源氧胁迫更敏感,突变株胞外过氧化物酶和漆酶活性均显著降低;进一步研究发现,ΔAsSlt2细胞壁中几丁质含量减少,几丁质合成相关基因与漆酶合成相关基因的表达量均明显降低。【结论】AsSlt2基因在茄链格孢细胞壁的完整性及抵御外界胁迫方面发挥重要作用。  相似文献   

2.
构建了含有工业酿酒酵母自身GPD2启动子和终止子、扣囊复膜孢酵母β-葡萄糖苷酶基因(BGL1)和潮霉素选择性标记hyg的重组质粒pPIC-gpd-bgl-hyg,通过酵母染色体同源重组,将BGLl基因整合进入工业酒精酵母的染色体上。重组酵母可以在以纤维二糖为唯一碳源的培养基上生长,48h时β-葡萄糖苷酶酶活达到0.764U/mL。在玉米浓醪酒精发酵实验中,与宿主菌株相比,重组酵母醪液中纤维二糖含量减少约80%,达到了消耗醪液中纤维二糖含量的目的。  相似文献   

3.
【背景】目前解脂亚罗酵母在实验研究和工业生产方面的应用越来越广泛,但相较于常规酵母而言,解脂亚罗酵母缺乏简便有效的遗传转化体系,致使其在基因表达调控方面存在较大困难。同时,酵母的染色体倍性也会对基因敲除效果产生影响,选择单倍体细胞作为功能基因改造的受体可以避免等位基因之间相互作用的影响,解决多倍体细胞基因敲除不完全的问题。【目的】以解脂亚罗酵母诱变菌株P12为研究对象,以不同方法分离得到单倍体菌株,建立解脂亚罗酵母单倍体的制备方法。【方法】分别采用固体和液体McClary产孢培养基诱导解脂亚罗酵母菌株产生子囊孢子,培养条件为30℃,固体7-14 d;液体200 r/min,2-4 d。以2%浓度的蜗牛酶33℃水浴裂解子囊孢子细胞壁3 h,通过染色镜检和PCR鉴定筛选单倍体细胞。【结果】镜检结果表明,解脂亚罗酵母在液体产孢培养基中产孢速度较快,相同视野下孢子数约为固体产孢培养基的3.7倍,在固体产孢培养基中产孢质量较好。初步探索并筛选得到6株解脂亚罗酵母P12 B型单倍体菌株。【结论】解脂亚罗酵母P12 B型单倍体菌株的获得可为后续继续开展基因工程操作奠定基础。  相似文献   

4.
利用PCR技术,从扣囊复膜孢酵母的总DNA中扩增得到β-葡萄糖苷酶(β-Glucosidase)基因(BGL1),长度为2596 bp,连接到pGEM-T载体上,用限制性内切酶切下目的基因,插入到巴斯德毕赤酵母表达载体pPIC9K中,使之位于α-因子信号肽下游,且与之同框,构建成重组质粒pSHL9K.通过电转化将重组质粒pSHL9K插入到Pichia pastoris GS115菌株染色体中,获得高效表达BGL1基因的毕赤酵母重组工程菌株.重组酶的最适温度为50℃,最适pH为5.4.培养基中β-葡萄糖苷酶活性最高可达47U/mL.  相似文献   

5.
【目的】对转棘孢木霉几丁质酶基因tachi1的毕赤酵母工程菌GS-tachi1-K进行诱导表达,研究重组几丁质酶Tachi1的酶学性质,优化表达条件。【方法】对GS-tachi1-K进行甲醇诱导培养,纯化目的蛋白Tachi1进行几丁质酶酶学性质的研究;通过单因素和正交试验对GS-tachi1-K菌株产几丁质酶Tachi1表达条件进行优化。【结果】GS-tachi1-K表达的几丁质酶Tachi1表观分子量约为44 kDa,酶反应最适的温度和pH分别为50℃和5.5,具有较宽的温度、pH适用范围;50℃以下保持较高的酶活力,在碱性条件下稳定性较差;受Ag+、Hg2+、Cu2+、Fe2+和高浓度的SDS及β-巯基乙醇强烈抑制。该菌株的最佳表达条件为:pH为6.5,甲醇诱导浓度为0.5%,起始细胞浓度为OD600=2,甲醇诱导时间为180 h;几丁质酶Tachi1活力可达17.93 U/mL,蛋白表达量为6.19 g/L。【结论】成功实现了棘孢木霉新几丁质酶基因tachi1的毕赤酵母高效分泌表达,工程菌GS-tachi1-K具有高表达量和表达产物酶活性高两个特点,明确了几丁质酶Tachi1的酶学性质和最佳诱导表达条件,为该几丁质酶及其基因的深入研究和开发利用奠定了基础。  相似文献   

6.
利用PCR技术,从扣囊复膜孢酵母的总DNA中扩增得到β-葡萄糖苷酶(β-Glucosidase)基因 (BGL1),长度为2596 bp,连接到pGEMT载体上,用限制性内切酶切下目的基因,插入到巴斯德毕赤酵母表达载体pPIC9K中,使之位于α-因子信号肽下游,且与之同框, 构建成重组质粒pSHL9K。 通过电转化将重组质粒pSHL9K插入到Pichia pastoris GS115菌株染色体中,获得高效表达BGL1基因的毕赤酵母重组工程菌株。重组酶的最适温度为50℃,最适pH为5.4。培养基中β-葡萄糖苷酶活性最高可达47U/mL。  相似文献   

7.
张梁  周衍  石贵阳 《微生物学通报》2008,35(3):0321-0326
构建了含有工业酿酒酵母自身GPD2启动子和终止子、扣囊复膜孢酵母b-葡萄糖苷酶基因(BGL1)和潮霉素选择性标记hyg的重组质粒pPIC-gpd-bgl-hyg, 通过酵母染色体同源重组, 将BGL1基因整合进入工业酒精酵母的染色体上。重组酵母可以在以纤维二糖为唯一碳源的培养基上生长, 48 h时b-葡萄糖苷酶酶活达到0.764 U/mL。在玉米浓醪酒精发酵实验中, 与宿主菌株相比, 重组酵母醪液中纤维二糖含量减少约80%, 达到了消耗醪液中纤维二糖含量的目的。  相似文献   

8.
张梁  周衍  石贵阳 《微生物学报》2008,35(3):0321-0326
构建了含有工业酿酒酵母自身GPD2启动子和终止子、扣囊复膜孢酵母b-葡萄糖苷酶基因(BGL1)和潮霉素选择性标记hyg的重组质粒pPIC-gpd-bgl-hyg, 通过酵母染色体同源重组, 将BGL1基因整合进入工业酒精酵母的染色体上。重组酵母可以在以纤维二糖为唯一碳源的培养基上生长, 48 h时b-葡萄糖苷酶酶活达到0.764 U/mL。在玉米浓醪酒精发酵实验中, 与宿主菌株相比, 重组酵母醪液中纤维二糖含量减少约80%, 达到了消耗醪液中纤维二糖含量的目的。  相似文献   

9.
【目的】表达并鉴定来源于维氏气单胞菌的几丁质酶Chi92并研究其作为水产饲用酶的有效性。【方法】自A.veronii B565中克隆chi92基因并在Pichia pastoris GS115中进行表达,对表达成功的Chi92进行分离纯化和生化鉴定。最后将Chi92添加到含有毕赤酵母粉的饲料中饲喂斑马鱼2周,研究Chi92添加对斑马鱼生长、饲料利用率、肠道微绒毛形态和抗病性能的影响。【结果】chi92基因编码具有864个氨基酸残基的多肽。Chi92在p H 6.0和40°C时表现最佳酶活。Chi92对蛋白酶有抗性,同时酶活不受金属离子显著影响。Chi92具备高几丁质酶活(69.4 U/m L)。以胶体几丁质和β-1,3-1,4-葡聚糖作为底物时,比活力分别为809.2 U/mg和235.6 U/mg。薄层层析和电喷雾电离质谱联用技术均表明N-乙酰葡糖胺二聚体是Chi92酶解胶体几丁质的主要产物。Chi92在对酵母细胞壁的降解方面比其他几丁质酶性能更加优良。经过2周饲喂,添加有Chi92的饲料显著提高了斑马鱼肠道微绒毛的高度和密度,同时斑马鱼的生长,饲料利用率,以及抗病性能均得到了一定提高。【结论】Chi92具有p H稳定性、抗逆性和高酵母细胞壁降解功能,能较好地作为饲用酶用于温水水产养殖。  相似文献   

10.
【背景】β-葡聚糖是自然界中广泛存在的非淀粉多糖,是谷类植物细胞壁的主要成分。β-葡聚糖酶能够水解β-葡聚糖生成低聚合度的寡糖,在食品、饲料、造纸等领域发挥着重要的作用。【目的】从海洋细菌沙质微泡菌(Microbulbifer arenaceous)中克隆到一个β-1,3(4)-葡聚糖酶基因,在大肠杆菌中可溶表达,研究其相关酶学性质。【方法】以沙质微泡菌(Microbulbifer arenaceous)基因组DNA为模板,克隆一个β-1,3(4)-葡聚糖酶基因(MaGlu16A),构建重组表达载体p ET-28a-MaGlu16A并在大肠杆菌BL21(DE3)中诱导表达,通过Ni-NTA亲和层析纯化后进行酶学性质研究。【结果】MaGlu16A的最适pH和最适温度分别为pH 6.0和40°C,在pH 5.0-10.5和35°C以下稳定。对EDTA具有较高的抵抗性,在1 mmol/L和10 mmol/L EDTA浓度下仍保持99.3%和82.5%的酶活力。该酶能够有效水解可得然多糖、昆布多糖、大麦葡聚糖、地衣多糖、燕麦葡聚糖和酵母葡聚糖,水解产物主要为葡萄糖、二糖、三糖和四糖。【结论】海洋细菌沙质微泡菌(Microbulbiferarenaceous)来源β-1,3(4)-葡聚糖酶的克隆表达及酶学性质的测定为β-葡聚糖酶的挖掘及β-葡寡糖的制备奠定了基础。  相似文献   

11.
In yeast, chitin is laid down at three locations: a ring at the mother-bud neck, the primary septum and, after cytokinesis, the cell wall of the daughter cell. Some of the chitin is free and the remainder attached to beta(1-3)glucan or beta(1-6)glucan. We recently reported that the chitin ring contributes to the prevention of growth at the mother-bud neck and hypothesized that this inhibition is achieved by a preferential binding of chitin to beta(1-3)glucan at that site. Here, we devised a novel strategy for the analysis of chitin cross-links in [14C]glucosamine-labeled cell walls, involving solubilization in water of alkali-treated walls by carboxymethylation. Intact cell walls or their digestion products with beta(1-3)glucanase or beta(1-6)glucanase were carboxymethylated and fractionated on size columns, and the percentage of chitin bound to different polysaccharides was calculated. Chitin dispersed in the wall was labeled in maturing unbudded cells and that of the ring in early budding cells. The former was mostly attached to beta(1-6)glucan and the latter to beta(1-3)glucan. This confirmed our hypothesis and indicated that the cell has mechanisms to attach chitin, a water-insoluble substance, synthesized here through chitin synthase III, to different acceptors, depending on location. In contrast, most of the chitin synthase II-dependent chitin of the primary septum was free, with the remainder linked to beta(1-3)glucan.  相似文献   

12.
Growth of Micromonospora chalcea on a defined medium containing laminarin as the sole carbon source induced the production of an extracellular enzyme system capable of lysing cells of various yeast species. Production of the lytic enzyme system was repressed by glucose. Incubation of sensitive cells with the active component enzymes of the lytic system produced protoplasts in high yield. Analysis of the enzyme composition indicated that beta(1-->3) glucanase and protease were the most prominent hydrolytic activities present in the culture fluids. The system also displayed weak chitinase and beta(1-->6) glucanase activities whilst devoid of mannanase activity. Our observations suggest that the glucan supporting the cell wall framework of susceptible yeast cells is not directly accessible to the purified endo-beta(1-->3) glucanase and that external proteinaceous components prevent breakdown of this polymer in whole cells. We propose that protease acts in synergy with beta(1-->3) glucanase and that the primary action of the former on surface components allows subsequent solubilization of inner glucan leading to lysis.  相似文献   

13.
Cell walls were prepared from the yeastlike and mycelial phases (YP and MP) of Histoplasma capsulatum and from Saccharomyces cerevisiae by mechanical disruption and washing. Lipids were extracted with methanol-ether, chloroform, and acidified methanol:ether; a final extraction was made with ethylenediamine. The lipid contents of H. capsulatum YP and MP walls were about the same. Qualitative and quantitative analyses were made of the products obtained from treatment of the cell walls, or fractions from them, with weak acid or with enzymatic preparations containing glucanase and chitinase activities. YP walls contained much larger quantities of chitin and smaller quantities of mannose and amino acids than the MP walls. H. capsulatum MP was shown to resemble S. cerevisiae by low chitin content and by the presence of a mannose polymer, soluble in ethylenediamine and water. H. capsulatum MP chitin appeared to be intimately associated with glucose in the wall, since enzymatic hydrolysis of the residue after mild acid hydrolysis of cell walls or fractions from them resulted in the release of glucose and acetylglucosamine; only acetylglucosamine was released from YP walls with such treatment. By electron microscopic observations, the unextracted MP cell walls were much thinner than the YP, and neither wall appeared laminated.  相似文献   

14.
Cell Walls and Lysis of Mortierella parvispora Hyphae   总被引:1,自引:0,他引:1       下载免费PDF全文
Walls of Mortierella parvispora, Pullularia pullulans, Absidia repens, Fusarium oxysporum, and of several Penicillium species varied in their susceptibilities to digestion by glucanase and chitinase. Polysaccharides were present in the residues remaining after enzymatic digestion. Acid hydrolysates of the walls contained glucose, glucosamine, and a small amount of galactose. The walls of M. parvispora, which also contained fucose, were the least digested by these two enzymes. Much of the M. parvispora wall material was resistant to decomposition by a heterogeneous soil community, and viable hyphae were not lysed by a glucanase-chitinase mixture. Walls of this fungus were fractionated, and the chemical composition of the fractions was determined. The chitin which was abundant in one of the fractions was apparently largely shielded from chitinase hydrolysis by a glucan. The ecological significance of these findings is discussed.  相似文献   

15.
Differences in polysaccharide composition of various fungal cell walls were indicated by their susceptibility to enzymatic digestion. This information was used to optimize the enzymatic extraction of intracellular enzymes or the preparation of fungal protoplasts in high yield. Bacterial glucanase and chitinase specially purified were used for this study. Mycelium of Aspergillus niger grown on uric acid was treated with mixtures of glucanase and chitinase. Cell wall breakdown products were analysed and the ratio of chitin to glucan was estimated to be 1:1.4. A. niger protoplast formation was optimized using this information. When the mixture of chitinase to glucanase was 1:1.4, similar to the fungal cell wall composition, a 95% yield of protoplasts was obtained after 30 min and their mean size was 7 μm. However, a ratio of 1.5 to 1 (chitinase to glucanase) was needed for the maximum extraction of uricase. Yield was 10.5 μ g−1cells after 1.5 h incubation at 28°C. Glucanase alone resulted in a maximum yield of 1.9 μ g−1while chitinase alone yielded 6.0 μ g−1under the same conditions.  相似文献   

16.
The cross-linking of polysaccharides to assemble new cell wall in fungi requires mechanisms by which a preexisting linkage is broken for each new one made, to allow for the absence of free energy sources outside the plasma membrane. Previous work showed that Crh1p and Crh2p, putative transglycosylases, are required for the linkage of chitin to beta(1-3)glucose branches of beta(1-6)glucan in the cell wall of budding yeast. To explore the linking reaction in vivo and in vitro, we used fluorescent sulforhodamine-linked laminari-oligosaccharides as artificial chitin acceptors. In vivo, fluorescence was detected in bud scars and at a lower level in the cell contour, both being dependent on the CRH genes. The linking reaction was also shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chitin production. Both the nucleotide and the Crh proteins were required here. A gas1 mutant that overexpresses Crh1p showed very high fluorescence both in intact and permeabilized cells. In the latter, fluorescence was still incorporated in patches in the absence of UDP-GlcNAc. Isolated cell walls of this strain, when incubated with sulforhodamine-oligosaccharide, also showed Crhp-dependent fluorescence in patches, which were identified as bud scars. In all three systems, binding of the fluorescent material to chitin was verified by chitinase digestion. Moreover, the cell wall reaction was inhibited by chitooligosaccharides. These results demonstrate that the Crh proteins act by transferring chitin chains to beta(1-6)glucan, with a newly observed high activity in the bud scar. The importance of transglycosylation for cell wall assembly is thus firmly established.  相似文献   

17.
K Doi  A Doi 《Journal of bacteriology》1986,168(3):1272-1276
When inserted in the correct orientation at the BamHI site of plasmid YRp7, an 8.6-kilobase BamHI fragment of Arthrobacter sp. strain YCWD3 DNA gave Escherichia coli HB101 cells harboring the recombinant plasmid pBX20 the ability to lyse bakers' yeast cell walls or bakers' yeast glucan in agar medium. An extract of the transformed E. coli cells contained an endo-beta-(1----3)-glucanase with the same activity pattern as that of glucanase I produced by Arthrobacter sp. strain YCWD3. Although part of the glucanase activity was contributed by apparently defective molecules, two protein species were found which had high lytic activity on yeast cell walls and adsorbed to microcrystalline cellulose, and both had a single constituent polypeptide with a molecular weight of about 55,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In these properties the protein species were indistinguishable from those glucanase I protein species of Arthrobacter sp. strain YCWD3 which we believe are nearly the intact molecule. We conclude that the cloned fragment of Arthrobacter sp. strain YCWD3 DNA contains the structural gene for glucanase I. A recombinant plasmid obtained by subcloning a PstI fragment of pBX20 into pBR322 caused the transformed E. coli cells to produce apparently defective glucanase molecules only. This observation serves as additional supporting evidence for our conclusion.  相似文献   

18.
This article describes the synthesis and regulation of beta(1-3)glucanase and protease enzymes from the cell lytic system of Oerskovia xanthineolytica LL-G109 in continuous culture using different concentrations of carbon source (glucose) and inducer (glucan). These two enzyme activities are the main components of a lytic system capable of lysing and disrupting whole yeast cells; it is subject to catabolite repression by glucose and is induced by yeast glucan. Peaks of beta(1-3)glucanase and protease activity are obtained at dilution rates of between 0.05 and 0.15 h(-1). The glucanase-protease ratio is very high compared to other strains. At dilution rates above 0.15 h(-1) all activities are similar to those obtained in batch culture. The lytic enzyme system appears to contain several beta(1-3)glucanase enzymes. In continuous culture both productivity and enzyme concentrations are greatly in creased when compared to batch culture, 11- and 4.4-fold, respectively.  相似文献   

19.
Bacillus circulans WL-12 when grown in a mineral medium with yeast cell walls or yeast glucan as the soli carbon source, produced five beta-glucanases. Two beta-(1 leads to 3)-glucanases (I and II), which are lytic to yeast cell walls, were isolated from the culture liquid by batch adsorption on yeast glucan, and separated by chromatography on hydroxylapatite. Lytic beta-(1 leads to 3)-glucanase I was further purified by carboxymethylcellulose chromatography. The specific activity of lytic beta-(1 leads to 3)-glucanase I on laminarin was 4.1 U per mg of protein. The enzyme moved as a single protein with a molecular weight of 40000 during sodium dodecylsulfate electrophoresis in slab gels. It was specific for the beta-(1 leads to 3)-glucosidic bond but the enzyme did not hydrolyze laminaribiose. Hydrolysis of laminarin went through a series of oligosaccharides, and laminaribiose and glucose accumulated till the end of the reaction. A small amount of gentibiose was also produced from laminarin. Products from yeast cell walls and yeast glucan included laminaripentaose, laminaritriose, laminaribiose, glucose and gentiobiose, but no laminaritetraose was detected. This glucanase has an optimum pH of 5.5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号