首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life span and aging are substantially modified by natural selection. Across species, higher extrinsic (environmentally related) mortality (and hence shorter life expectancy) selects for the evolution of more rapid aging. However, among populations within species, high extrinsic mortality can lead to extended life span and slower aging as a consequence of condition‐dependent survival. Using within‐species contrasts of eight natural populations of Nothobranchius fishes in common garden experiments, we demonstrate that populations originating from dry regions (with short life expectancy) had shorter intrinsic life spans and a greater increase in mortality with age, more pronounced cellular and physiological deterioration (oxidative damage, tumor load), and a faster decline in fertility than populations from wetter regions. This parallel intraspecific divergence in life span and aging was not associated with divergence in early life history (rapid growth, maturation) or pace‐of‐life syndrome (high metabolic rates, active behavior). Variability across four study species suggests that a combination of different aging and life‐history traits conformed with or contradicted the predictions for each species. These findings demonstrate that variation in life span and functional decline among natural populations are linked, genetically underpinned, and can evolve relatively rapidly.  相似文献   

2.
The use of model organisms, such as Drosophila melanogaster, provides a powerful method for studying mechanisms of aging. Here we report on a large set of recombinant inbred (RI) D. melanogaster lines that exhibit approximately a fivefold range of average adult longevities. Understanding the factors responsible for the differences in longevity, particularly the characteristics of the longest-lived lines, can provide fundamental insights into the mechanistic correlates of aging. In ectothermic organisms, longevity is often inversely correlated with metabolic rate, suggesting the a priori hypothesis that long-lived lines will have low resting metabolic rates. We conducted approximately 6000 measurements of CO2 production in individual male flies aged 5, 16, 29, and 47 days postemergence and simultaneously measured the weight of individual flies and life spans in populations of each line. Even though there was a wide range of longevities, there was no evidence of an inverse relationship between the variables. The increased longevity of long-lived lines is not mediated through reduction of metabolic activity. In Drosophila, it is possible to both maintain a normal metabolic rate and achieve long life. These results are evaluated in the context of 100 years of research on the relationship between metabolic rate and life span.  相似文献   

3.
We measured age-specific metabolic rates in 2861 individual Drosophila melanogaster adult males to determine how genetic variation in metabolism is related to life span. Using recombinant inbred (RI) lines derived from populations artificially selected for long life, resting metabolic rates were measured at 5, 16, 29, and 47 days posteclosion, while life spans were measured in the same genotypes in mixed-sex population cages and in single-sex vials. We observed much heritable variation between lines in age-specific metabolic rates, evidence for genotype x age interaction, and moderate to large heritabilities at all ages except the youngest. Four traits exhibit evidence of coordinate genetic control: day 16 and day 29 metabolic rates, life span in population cages, and life span in vials. Quantitative trait loci (QTL) for those traits map to the same locations on three major chromosomes, and additive genetic effects are all positively correlated. In contrast, metabolic rates at the youngest and oldest ages are unrelated to metabolic rates at other ages and to survival. We suggest that artificial selection for long life via delayed reproduction also selects for increased metabolism at intermediate ages. Contrary to predictions of the "rate of living" theory, we find no evidence that metabolic rate varies inversely with survival, at the level of either line means or additive effects of QTL.  相似文献   

4.
The potential for sexual conflict to influence the evolution of life span and aging has been recognized for more than a decade, and recent work also suggests that variation in life span and aging can influence sexually antagonistic coevolution. However, empirical exploration of these ideas is only beginning. Here, we provide an overview of the ideas and evidence linking inter- and intralocus sexual conflicts with life span and aging. We aim to clarify the conceptual basis of this research program, examine the current state of knowledge, and suggest key questions for further investigation.Sexual conflict arises because the sexes maximize their fitness via different, and often mutually incompatible, strategies, and its signature has been detected across a wide range of morphological, physiological, behavioral, and life-history traits in many species. A number of investigators have suggested that sexual conflict could play an important role in the evolution of two particularly interesting life-history traits: life span and aging (Svensson and Sheldon 1998; Promislow 2003; Bonduriansky et al. 2008; Maklakov and Lummaa 2013). Sexual conflict can affect life span and aging rate at both proximate (within-generation) and ultimate (evolutionary) scales. Sexually antagonistic behavioral or physiological interactions that increase mortality rate in one or both sexes (interlocus sexual conflict) could drive the evolution of faster life histories. Moreover, sex-specific optimization of reproductive strategies may often result in sex differences in life span and aging rates, and sexually antagonistic selection on shared genetic architecture can displace one or both sexes from their sex-specific optima for these traits (intralocus sexual conflict). Conversely, a change in life histories because of environmental fluctuations could affect the degree of sexual conflict in a population and influence sexual coevolution. Although evidence for sexual conflict is rapidly accumulating, our understanding of its relationship to life span and aging remains rudimentary. In this review, we provide a critical review of recent literature and highlight areas that require further investigation.  相似文献   

5.
Lynch G  Bi X 《Neurochemical research》2003,28(11):1725-1734
Hypotheses about the factors controlling the rate of brain aging are usually derived from 1) correlates of maximum life span across mammals or 2) investigations into the causes of age-related neuropathologies in humans. With regard to the former, the strong correlation between metabolic rate and longevity prompted a variety of free radical hypotheses of aging. There is also evidence that brain size affects life span independently of body metabolism rates. The second approach has led to a diverse array of pathogenic mechanisms and, importantly for the development of general hypotheses, the discovery of animal analogues. The present paper discusses the possibility that age-associated lysosomal dysfunction constitutes a generalized mammalian phenomenon that accounts for specific features of the aged human brain. Immunocytochemical studies using rats and dogs have identified lysosomal changes that begin early in adulthood and are most pronounced in brain areas known to be particularly vulnerable to age-related pathogenesis in humans. Experimentally induced lysosomal dysfunction in cultured brain slices from rats and mutant mice triggers a wide array of changes associated with the aged human brain, including meganeurites and intraneuronal tangles. Finally, there is evidence that at least some forms of proteolysis decrease with increasing brain size across the mammals. The above observations lead to the suggestion that the expansion of neuronal arborizations that occurred in conjunction with increases in brain size secondarily slowed both neuronal metabolism and protein turnover. These events could have served to reduce the rate at which lysosomes (and other organelles) fail.  相似文献   

6.
P. Christe  L. Keller  A. Roulin 《Oikos》2006,114(2):381-384
Evolutionary theory predicts that the rate of extrinsic (i.e. age- and condition-independent) mortality should affect important life history traits such as the rate of ageing and maximum lifespan. Sex-specific differences in mortality rates due to predation may therefore result in the evolution of important differences in life history traits between males and females. However, quantifying the role of predators as a factor of extrinsic mortality is notoriously difficult in natural populations. We took advantage of the unusual prey caching behaviour of the barn owl Tyto alba and the tawny owl Strix aluco to estimate the sex ratio of their five most common preys. For all prey species, there was a significant bias in the sex ratio of remains found in nests of both these owls. A survey of literature revealed that sex-biased predation is a common phenomenon. These results demonstrate that predation, a chief source of extrinsic mortality, was strongly sex-biased. This may select for alternate life history strategies between males and females, and account for a male life span being frequently lower than female lifespan in many animal species.  相似文献   

7.
Allometric principles account for most of the observed variation in maximum life span among mammals. When body-size effects are controlled for, most of the residual variance in mammalian life span can be explained by variations in brain size, metabolic rate and body temperature. It is shown that species with large brains for a given body size and metabolic rate, such as anthropoid primates, also have long maximum life spans. Conversely, mammals with relatively high metabolic rates and low levels of encephalization, as in most insectivores and rodents, tend to have short life spans. The hypothesis is put forward that encephalization and metabolic rate, which may govern other life history traits, such as growth and reproduction, are the primary determinants directing the evolution of mammalian longevity.  相似文献   

8.
Several investigators have generated long-lived nematode worms (Caenorhabditis elegans) in the past decade by mutation of genes in the organism in order to study the genetics of aging and longevity. Dozens of longevity assurance genes (LAG) that dramatically increase the longevity of this organism have been identified. All long-lived mutants of C. elegans are also resistant to environmental stress, such as high temperature, reactive oxygen species (ROS), and ultraviolet irradiation. Double mutations of some LAGs further extended life span up to 400%, providing more insight into cellular mechanisms that put limits on the life span of organisms. With the availability of the LAG mutants and the combined DNA microarray and RNAi technology, the understanding of actual biochemical processes that determine life span is within reach: the downstream signal transduction pathway may regulate life span by up-regulating pro-longevity genes such as those that encode antioxidant enzymes and/or stress-response proteins, and down-regulating specific life-shortening genes. Furthermore, longevity could be modified through chemical manipulation. Results from these studies further support the free radical theory of aging, suggest that the molecular mechanism of aging process may be shared in all organisms, and provide insight for therapeutic intervention in age-related diseases.  相似文献   

9.
Abstract Mortality is a fundamental demographic rate, the nature of which has profound consequences for both the dynamics of populations and the life-history evolution of species. For example, if per capita mortality rates are age- or stage-specific, life-history traits should evolve in response to age- and stage-specific differences in selection arising from these temporally variable rates. Similarly, variation in the average mortality rate across ages and/or stages can also select for shifts in life history. Mortality rates of recently settled reef fishes can be very high and per capita mortality is commonly assumed to decrease with increasing age. A review of evidence for age-specific per capita mortality rates in reef fishes from early postsettlement up to 13 months postsettlement suggests that during this period these rates are often age invariant. The data on which these interpretations are based, however, are extremely limited both in terms of the proportion of the life cycle over which mortality rates have been sampled and the quality of these data. Nonetheless, these data do suggest that selective pressures associated with patterns of mortality may vary among species of reef fishes and that these species therefore could be more effectively used in the study of life-history evolution. At present, reef fishes are under-represented in the study of life-history evolution compared with other vertebrate taxa.  相似文献   

10.
Much of the recent interest in aging research is due to the discovery of genes in a variety of model organisms that appear to modulate aging. A large amount of research has focused on the use of such long-lived mutants to examine the fundamental causes of aging. While model organisms do offer many advantages for studying aging, it also critical to consider the limitations of these systems. In particular, ectothermic (poikilothermic) organisms can tolerate a much larger metabolic depression than humans. Thus, considering only chronological longevity when assaying for long-lived mutants provides a limited perspective on the mechanisms by which longevity is increased. In order to provide true insight into the aging process additional physiological processes, such as metabolic rate, must also be assayed. This is especially true in the nematode Caenorhabditis elegans, which can naturally enter into a metabolically reduced state in which it survives many times longer than its usual lifetime. Currently it is seen as controversial if long-lived C. elegans mutants retain normal metabolic function. Resolving this issue requires accurately measuring the metabolic rate of C. elegans under conditions that minimize environmental stress. Additionally, the relatively small size of C. elegans requires the use of sensitive methodologies when determining metabolic rates. Several studies indicating that long-lived C. elegans mutants have normal metabolic rates may be flawed due to the use of inappropriate measurement conditions and techniques. Comparisons of metabolic rate between long-lived and wild-type C. elegans under more optimized conditions indicate that the extended longevity of at least some long-lived C. elegans mutants may be due to a reduction in metabolic rate, rather than an alteration of a metabolically independent genetic mechanism specific to aging.  相似文献   

11.
Genetic interventions that accelerate or retard aging in mice are crucial in advancing our knowledge over mammalian aging. Yet determining if a given intervention affects the aging process is not straightforward since, for instance, many disease-causing mutations may decrease life span without affecting aging. In this work, we employed the Gompertz model to determine whether several published interventions previously claimed to affect aging in mice do indeed alter the aging process. First, we constructed age-specific mortality tables for a number of mouse cohorts used in longevity experiments and calculated the rate at which mortality increases with age. Estimates of age-independent mortality were also calculated. We found no statistical evidence that GHRHR, IGF1R, INSR, PROP1, or TRX delay or that ATM + TERC, BubR1, klotho, LMNA, PRDX1, p53, WRN + TERC, or TOP3B accelerate mouse aging. Often, changes in the expression of these genes affected age-independent mortality and so they may prove useful to other aspects of medicine. We found statistical evidence that C/EBP, MSRA, SHC1, growth hormone, GHR, PIT1, and PolgA may influence aging in mice. These results were interpreted together with age-related physiological and pathological changes and provide novel insights regarding the role of several genes in the mammalian aging process.  相似文献   

12.
Peter Ryser  Pille Urbas 《Oikos》2000,91(1):41-50
Interspecific variation in leaf life span reflects the variation in nutrient conservation ability among different plant species and is considered to be associated with nutrient availability in the characteristic habitat. As defoliation interferes with nutrient conservation by the long-lived leaves, we hypothesized that disturbance rate is another important environmental factor working as a selective force on interspecific variation in leaf life span. In order to investigate this, we measured leaf life span of 32 grass species in mature garden-grown individuals. Variation in leaf life span was compared to measured leaf traits, to available data on species occurrence along gradients of nutrient availability and disturbance, and to published relative growth rates of the species. Leaf life span was associated positively with leaf tissue mass density and negatively with specific leaf area. Leaf life span correlated negatively with the disturbance rate in the characteristic habitat of a species, but not with nutrient availability. The latter relationship did not come about due to the long leaf life spans of species from nutrient-rich habitats with a relatively low disturbance rate, and to some extent also due to the short leaf life spans of annual species from relatively nutrient-poor sites. We conclude that although leaf longevity is an important means of reducing nutrient losses, this is a selective advantage only if the plant is not subjected to frequent defoliation. The frequently postulated association between leaf life span of a species and nutrient availability in its characteristic habitat may occur among species of habitats with positively correlated nutrient availability and disturbance rate. Leaf life span is negatively associated with seedling RGR, but there may be deviations in this relationship due to species with contrasting characteristics at seedling stage and at maturity.  相似文献   

13.
Abstract

Several investigators have generated long-lived nematode worms (Caenorhabditis elegans) in the past decade by mutation of genes in the organism in order to study the genetics of aging and longevity. Dozens of longevity assurance genes (LAG) that dramatically increase the longevity of this organism have been identified. All long-lived mutants of C. elegans are also resistant to environmental stress, such as high temperature, reactive oxygen species (ROS), and ultraviolet irradiation. Double mutations of some LAGs further extended life span up to 400%, providing more insight into cellular mechanisms that put limits on the life span of organisms. With the availability of the LAG mutants and the combined DNA microarray and RNAi technology, the understanding of actual biochemical processes that determine life span is within reach: the downstream signal transduction pathway may regulate life span by up-regulating pro-longevity genes such as those that encode antioxidant enzymes and/or stress-response proteins, and down-regulating specific life-shortening genes. Furthermore, longevity could be modified through chemical manipulation. Results from these studies further support the free radical theory of aging, suggest that the molecular mechanism of aging process may be shared in all organisms, and provide insight for therapeutic intervention in age-related diseases.  相似文献   

14.
The relationship of oxidative stress with maximum life span (MLSP) in different vertebrate species is reviewed. In all animal groups the endogenous levels of enzymatic and non-enzymatic antioxidants in tissues negatively correlate with MLSP and the most longevous animals studied in each group, pigeon or man, show the minimum levels of antioxidants. A possible evolutionary reason for this is that longevous animals produce oxygen radicals at a low rate. This has been analysed at the place where more than 90% of oxygen is consumed in the cell, the mitochondria. All available work agrees that, across species, the longer the life span, the lower the rate of mitochondrial oxygen radical production. This is true even in animal groups that do not conform to the rate of living theory of aging, such as birds. Birds have low rates of mitochondrial oxygen radical production, frequently due to a low free radical leak in their respiratory chain. Possibly the low rate of mitochondrial oxygen radical production of longevous species can decrease oxidative damage at targets important for aging (like mitochondrial DNA) that are situated near the places of free radical generation. A low rate of free radical production can contribute to a low aging rate both in animals that conform to the rate of living (metabolic) theory of aging and in animals with exceptional longevities, like birds and primates. Available research indicates there are at least two main characteristics of longevous species: a high rate of DNA repair together with a low rate of free radical production near DNA. Simultaneous consideration of these two characteristics can explain part of the quantitative differences in longevity between animal species. Accepted: 12 December 1997  相似文献   

15.
The effect of leaf aging on photosynthetic capacities was examined for upper canopy leaves of five tropical tree species in a seasonally dry forest in Panama. These species varied in mean leaf longevity between 174 and 315 d, and in maximum leaf life span between 304 and 679 d. The light-saturated CO2 exchange rates of leaves produced during the primary annual leaf flush measured at 7-8 mo of age were 33-65% of the rates measured at 1-2 mo of age for species with leaf life span of < 1 yr. The negative regression slopes of photosynthetic capacity against leaf age were steeper for species with shorter maximum leaf longevity. In all species, regression slopes were less steep than the slopes predicted by assuming a linear decline toward the maximum leaf age (20-80% of the predicted decline rate). Maximum oxygen evolution rates and leaf nitrogen content declined faster with age for species with shorter leaf life spans. Statistical significance of regression slopes of oxygen evolution rates against leaf age was strongest on a leaf mass basis (r = 0.49-0.87), followed by leaf nitrogen basis (r = 0.48-0.77), and weakest on a leaf area basis (r = 0.35-0.70).  相似文献   

16.
Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Better understanding of the underlying mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing oxidative damage. Reactive oxygen species (ROS) have been proposed to cause deleterious effects on DNA, proteins, and lipids, and generation of these highly reactive molecules takes place in the mitochondria. But ROS is positively implicated in cellular stress defense mechanisms and formation of ROS a highly regulated process controlled by a complex network of intracellular signaling pathways. There are endogenous anti-oxidant defense systems that have the potential to partially counteract ROS impact. In this review, we will describe pathways contributing to the regulation of the age-related decline in mitochondrial function and their impact on longevity. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

17.
Female reproductive decline is one of the first aging phenotypes in humans, manifested in increasing rates of infertility, miscarriage, and birth defects in children of mothers over 35. Recently, Caenorhabditis elegans (C. elegans) has been developed as a model to study reproductive aging, and several studies have advanced our knowledge of reproductive aging regulation in this organism. In this review, we describe our current understanding of reproductive cessation in C. elegans, including the relationship between oocyte quality, ovulation rate, progeny number, and reproductive span. We then discuss possible mechanisms of oocyte quality control, and provide an overview of the signaling pathways currently identified to be involved in reproductive span regulation in C. elegans. Finally, we extend the relevance of C. elegans reproductive aging studies to the issue of human female reproductive decline, and we discuss ideas concerning the relationship between reproductive aging and somatic longevity.  相似文献   

18.
We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.  相似文献   

19.
PETER MEDAWAR proposed that senescence arises from an age-related decline in the force of selection, which allows late-acting deleterious mutations to accumulate. Subsequent workers have suggested that mutation accumulation could produce an age-related increase in additive genetic variance (V(A)) for fitness traits, as recently found in Drosophila melanogaster. Here we report results from a genetic analysis of mortality in 65,134 D. melanogaster. Additive genetic variance for female mortality rates increases from 0.007 in the first week of life to 0.325 by the third week, and then declines to 0.002 by the seventh week. Males show a similar pattern, though total variance is lower than in females. In contrast to a predicted divergence in mortality curves, mortality curves of different genotypes are roughly parallel. Using a three-parameter model, we find significant V(A) for the slope and constant term of the curve describing age-specific mortality rates, and also for the rate at which mortality decelerates late in life. These results fail to support a prediction derived from MEDAWAR's ``mutation accumulation' theory for the evolution of senescence. However, our results could be consistent with alternative interpretations of evolutionary models of aging.  相似文献   

20.
Laboratory models have suggested a link between metabolism and life span in vertebrates, and it is well known that the evolution of specific life histories can be driven by metabolic factors. However, little is known regarding how the adoption of specific life-history strategies can shape aging and life span in populations facing different energetic demands from either a theoretical or a mechanistic viewpoint but significant insight can be gained by using a comparative approach. Comparative biology plays several roles in our understanding of the virtually ubiquitous phenomenon of aging in animals. First, it provides a critical evaluation of broad hypotheses concerning the evolutionary forces underlying the modulation of aging rate. Second, it suggests mechanistic hypotheses about processes of aging. Third, it illuminates particularly informative species because of their exceptionally slow or rapid aging rates to be interrogated about potentially novel mechanisms of aging. Although comparative biology has played a significant role in research on aging for more than a century, the new comparative biology of aging is poised to dwarf those earlier contributions, because: (1) new cellular and molecular techniques for investigating novel species are in place and more are being continually generated, (2) molecular systematics has resolved the phylogenetic relationships among a wide range of species, which allow for the implementation of analytic tools specialized for comparative biology, and (3) in addition to facilitating the construction of accurate phylogenies, the dramatic acceleration in DNA-sequencing technology is providing us with new tools for a comparative genomic approach to understanding aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号