首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C Belzung  R Misslin  E Vogel 《Life sciences》1988,42(18):1765-1772
The antagonistic effects of the benzodiazepine receptor inverse agonist beta-CCM (1 mg/kg) and of the partial inverse agonist RO 15-3505 (3 mg/kg) on the anxiolytic properties of ethanol (1 g/kg) in mice confronted with a light/dark choice procedure and with the staircase test were investigated. Both drugs reversed the effects of ethanol on some of the behavioral parameters, but beta-CCM alone elicited anxiogenic intrinsic effects. RO 15-3505 induced seizures in mice treated with a subconvulsant dose of pentylenetetrazole, the most efficient doses being 3 and 6 mg/kg. These data indicate that beta-CCM and RO 15-3505 can reverse some of the anxiolytic effects of ethanol, acting probably to oppose GABA function via the benzodiazepine receptor.  相似文献   

2.
Certain pharmacological properties of methyl beta-carboline-3-carboxylate (beta-CCM), a benzodiazepine receptor ligand, have been investigated in chicks. Although beta-CCM has been established previously as an "inverse agonist" of benzodiazepine receptors in rodents, having effects opposite to those of benzodiazepines in a variety of tests, in chicks this compound had a different pharmacological profile. Firstly, in contrast to the overt convulsant action of beta-CCM in other species, beta-CCM (0.05-40 mg/kg) did not produce convulsions by itself in chicks, but it was only proconvulsant. Secondly and most surprisingly, beta-CCM, like diazepam, produced in chicks a sedation which could be blocked by the benzodiazepine receptor antagonist Ro 15-1788. Thus it appears that beta-CCM can function both as an agonist and as an inverse agonist in this animal.  相似文献   

3.
Enhancement of learning and memory in mice by a benzodiazepine antagonist   总被引:1,自引:0,他引:1  
H Lal  B Kumar  M J Forster 《FASEB journal》1988,2(11):2707-2711
Benzodiazepines, a class of drugs widely employed as anxiolytics and anticonvulsants, can induce impairments of learning and memory. The purpose of the present investigation was to determine if a benzodiazepine receptor antagonist, flumazenil (Ro 15-1788), could enhance learning and memory. Pretraining injection of flumazenil (2.5 to 40.0 mg/kg) was found to enhance both learning and memory in a test requiring young mice to discriminate the correct arm of a T-maze to escape mild electric shock. In a second test, which required mice to passively avoid a dark chamber after shock, flumazenil pretreatment prevented the occurrence of amnesia induced by the cholinergic receptor antagonist scopolamine. It is hypothesized that flumazenil may facilitate learning or memory processes by reversing a negative modulatory influence of endogenous diazepam-like ligands for benzodiazepine receptors.  相似文献   

4.
Gatch MB  Jung ME  Wallis CJ  Lal H 《Life sciences》2002,71(22):2657-2665
Male Long-Evans rats were trained to discriminate mCPP (1.4 mg/kg, i.p.) from saline, using a two-lever, food-reinforced operant task. The GABA(A) antagonist, bicuculline (0.16-0.64 mg/kg), partially substituted for mCPP, whereas the benzodiazepine antagonist, flumazenil (1-10 mg/kg), and the benzodiazepine inverse agonist, Ro 15-4513 (0.25-2.5 mg/kg), failed to substitute for mCPP. Bicuculline produced no change in response rate, whereas Ro 15-4513 dose-dependently decreased responding. Flumazenil produced a small increase in response rates. Flumazenil (10 mg/kg), Ro 15-4513 (1.25 mg/kg), and the benzodiazepine agonists alprazolam (0.64 mg/kg) and diazepam (5 mg/kg) full agonist all failed to block the mCPP discriminative stimulus. When given in combination with mCPP, Ro15-4513 and alprazolam both produced lower response rates than did mCPP alone, whereas flumazenil and diazepam did not significantly alter response rates. These findings provide evidence that GABA(A) antagonists modulate the discriminative stimulus effects of mCPP, but that these effects are not mediated by activity at the benzodiazepine site.  相似文献   

5.
Rats maintained on 23-hr water deprivation were first trained to bar-press for continuous water reinforcement and then to discriminate between regularly alternating periods (24 sec) during which time a light signal was either on and each response was reinforced or the light was off and bar-presses were not rewarded. The following drugs were injected s. c. prior to the sessions of discriminative learning: piracetam, 1-(4-Methyl-piperazinocarbonylmethyl)-2-pyrrolidone/hydrogen maleate (VUFB 13763), N alpha-glycyl-glycyl[8-lysine]des-9-glycinamide-vasopressin (DG-Trigly-LVP) and an analog of MIF, EUC-Leu-beta-Ala-NH2 (EUC, 2-oxoimidazolidine-1-carboxylic acid). None of the drugs influenced the total number of bar-pressing (sum of reinforced and non reinforced responses). Piracetam (100 mg.kg-1), VUFB 13763 (40 mg.kg-1) and EUC-Leu-beta-Ala-NH2 (1 mg.kg-1) improved the performance of rats on the discrimination learning task, DG-Trigly-LVP slowed the rate of acquisition.  相似文献   

6.
In vivo microdialysis was used to determine the effect of diazepam, flumazenil and FG-7142 upon the biogenic amine response to acute and repeated swim stress in the medial prefrontal cortex of the rat. Acute swim stress increased norepinephrine levels, although dopamine and serotonin levels remained stable. Upon re-exposure to swim stress twenty-four hours later, sustained increases (200–300% of baseline) in all three biogenic amines were detected. This enhanced response to re-stress was not seen in rats pretreated with either a benzodiazepine agonist (diazepam, 2 mg/kg), an antagonist (flumazenil, 10 mg/kg), or an inverse agonist (FG-7142, 10 mg/kg) given prior to the first swim stress. Therefore, the sensitization of biogenic amine response to re-stress may be prevented by compounds which differ in their activity at the benzodiazepine receptor.  相似文献   

7.
Rats (N = 8) were trained to discriminate the stimulus properties of the potent benzodiazepine (BZ) receptor inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) from saline in a two-lever operant task. The initial training dose of DMCM was 0.4 mg/kg at which the discrimination developed slowly; increasing the dose to 0.8 mg/kg resulted in rapid acquisition. However, since convulsions eventually developed during further training (sensitization), the training dose was finally individualized below the convulsive threshold (0.4-0.7 mg/kg). The DMCM cue was mimicked by FG 7142 (10 mg/kg), a non-convulsant anxiogenic beta-carboline, by pentylenetrazol (20-30 mg/kg), and by the GABA antagonist bicuculline (2 mg/kg). The DMCM cue was not, or marginally, blocked by diazepam (2.5 mg/kg) or pentobarbital (10-15 mg/kg). Furthermore, the BZ receptor antagonists CGS 8216 (2.5 mg/kg), ZK 93426 (20 mg/kg), and Ro 15-1788 (20-80 mg/kg) also did not, or only marginally, block the DMCM cue. However, the receptor antagonists (alone) substituted for DMCM although Ro 15-1788 was less effective. The partial BZ receptor agonist ZK 91296 (25 mg/kg), which is structurally similar to DMCM, blocked completely the DMCM stimulus effect. THIP (4 mg/kg) did not block the DMCM cue. To explain these results, we suggest that the repeated DMCM treatment, necessary for maintaining the discrimination, shifts the balancing point ("set-point") for positive (i.e., BZ-like) agonist efficacy versus inverse agonist efficacy, towards inverse action. This hypothesis was supported by the finding of an enhanced ability of GABA to reduce 3H-DMCM binding to cortical neuronal membranes of animals treated chronically with DMCM in a regimen similar to that used to maintain the DMCM discrimination. Furthermore, this treatment did not affect baseline 3H-DMCM binding, baseline or GABA stimulated 3H-diazepam binding, or 35S-TBPS binding (to chloride channels).  相似文献   

8.
Trimethyltin (TMT) is an organometal neurotoxin which produces lesions primarily in the limbic system. Selectivity seems to depend upon the dose, but the hippocampus and related entorhinal cortical structures, of importance for learning and memory, are most often described as target sites. We have previously demonstrated that subjects treated with a moderate dose of TMT prior to acquisition sessions, are unable to learn a forward autoshaping task with a 6 sec delay of reinforcement, but are capable of acquiring the same task when no delay of reinforcement is used. These data suggested that the performance deficit is one of learning (i.e. consolidation) rather than of memory (i.e. storage), retrieval, or sensorimotor impairment. To more rigorously test this hypothesis, we determined if performance of a task already learned would be impaired by the neurotoxin. Adult male Long Evans rats were given 10 acquisition sessions of 24 trials, following which TMT (6.0 mg/kg, p.o.) was administered. One month later, these rats performed the lever-touching behavior as well as controls, despite the fact that the same dose of TMT interfered with learning if given one month prior to acquisition sessions, thus confirming our hypothesis. In a second experiment we determined if the peptide analog of vasopressin, desglycinamide-8-arginine vasopressin (DGAVP), could reverse a learning deficit in a population of non-learners. Rats were treated with TMT or water vehicle one month prior to autoshaping. TMT significantly retarded acquisition. After 10 sessions of 12 trials each, non-learners (i.e. rats treated with TMT that failed to associate the lever with delivery of a reinforcer) were administered saline or DGAVP (7.5 micrograms/kg, s.c.) 1 hr before sessions 11-13; treatment was discontinued prior to sessions 14 and 15. Peptide treated subjects showed evidence of acquisition and exhibited higher levels of lever-directed behavior than saline treated nonlearners. Performance was maintained after DGAVP treatment was discontinued, indicating that the learning-enhancing action of DGAVP was not transient or state-dependent.  相似文献   

9.
《Zoology (Jena, Germany)》2014,117(2):104-111
This study assessed visual discrimination abilities in bamboo sharks (Chiloscyllium griseum). In a visual discrimination task using two-dimensional (2D) geometric stimuli, sharks learned to distinguish between a square, being the positive (rewarded) stimulus, and several negative stimuli, such as two differently sized triangles, a circle, a rhomboid and a cross. Although the amount of sessions to reach the learning criterion and the average trial time needed to solve each new task did not vary significantly, the number of correct choices per session increased significantly with on-going experiments. The results indicate that the sharks did not simply remember the positive stimulus throughout the different training phases. Instead, individuals also seemed to learn each negative symbol and possibly had to “relearn” at least some aspects of the positive stimulus during each training phase. The sharks were able to distinguish between the 2D stimulus pairs at a learning rate corresponding to that found in teleosts. As expected, it took the sharks longer to learn a reversal task (with the positive stimulus now being the negative one) than to discriminate between the other stimulus pairs. Nevertheless, the present results suggest that bamboo sharks can learn visual discrimination tasks, succeed in a reversal task and probably retain (some) information about a previously learned task when progressing to a new one.  相似文献   

10.
The acute behavioral effects of atropine sulfate were assessed using a battery of complex food-reinforced operant tasks that included: temporal response differentiation (TRD, n = 7); delayed matching-to-sample (DMTS, n = 6), progressive ratio (PR, n = 8), incremental repeated acquisition (IRA, n = 8), and conditioned position responding (CPR, n = 8). Performance in these tasks is thought to depend primarily upon specific brain functions such as time perception, short-term memory and attention, motivation, learning, and color and position discrimination, respectively. Atropine sulfate (0.01-0.56 mg/kg iv), given 15-min pretesting, produced significant dose-dependent decreases in the number of reinforcers obtained in all tasks. Response rates decreased significantly at greater than or equal to 0.03 mg/kg for the learning and discrimination tasks, at greater than or equal to 0.10 mg/kg for the motivation and short-term memory and attention tasks, and at greater than or equal to 0.30 mg/kg for the time perception task. Response accuracies were significantly decreased at doses greater than or equal to 0.10 mg/kg for the learning, discrimination, and short-term memory and attention tasks, and at greater than or equal to 0.30 mg/kg for the time perception task. Thus, the order of task sensitivity to any disruption by atropine is learning = color and position discrimination greater than time perception = short-term memory and attention = motivation (IRA = CPR greater than TRD = DMTS = PR). Thus in monkeys, the rates of responding in operant tasks designed to model learning and color and position discrimination were the most sensitive measures to atropine's behavioral effects. Accuracy in these same task was also disrupted but at higher doses. These data support the hypothesis that cholinergic systems play a greater role in the speed (but not accuracy) of performance of our learning and discrimination tasks compared to all other tasks. Accuracy of responding in these and the short-term memory task, all of which involve the use of lights as visual stimuli, was more sensitive to disruption by atropine than those tasks which did not utilize such strong visual stimuli.  相似文献   

11.
学习记忆对脑内c-fos基因表达的影响   总被引:11,自引:0,他引:11  
张玉秋  梅俊 《生命科学》2000,12(5):228-230,216
学习记忆是人和动物重要的脑功能,大量事实表明,学习记忆过程与脑内c-fos基因的表达密切相关。由学习记忆所诱导的c-fos基因表达在脑内广泛分布,以皮层、海马和边缘系统为多,依学习记忆训练模型的不同,其表达时程有所差异,但一般于训练后立即或30分钟左右出现,1~2小时左右达峰值。被动和主动回避训练、光辨别训练及味觉厌恶性条件反射训练等多种学习记忆模型均可诱导脑内c-fos基因的表达。其他影响学习记  相似文献   

12.
Hippocampal function is important in the acquisition of negative patterning but not of simple discrimination. This study examined rat hippocampal theta activity during the acquisition stages (early, middle, and late) of the negative patterning task (A+, B+, AB-). The results showed that hippocampal theta activity began to decline transiently (for 500 ms after non-reinforced stimulus presentation) during the late stage of learning in the negative patterning task. In addition, this transient decline in hippocampal theta activity in the late stage was lower in the negative patterning task than in the simple discrimination task. This transient decline during the late stage of task acquisition may be related to a learning process distinctive of the negative patterning task but not the simple discrimination task. We propose that the transient decline of hippocampal theta activity reflects inhibitory learning and/or response inhibition after the presentation of a compound stimulus specific to the negative patterning task.  相似文献   

13.
A fully automated procedure, involving computer-controlled stimulus presentation and computer-recorded response measurement, was used for the first time to study imitation in non-human animals. After preliminary training to peck and step on a manipulandum, budgerigars were given a discrimination task in which they were rewarded with food for pecking during observation of pecking and for stepping during observation of stepping (Compatible group), or for pecking while observing stepping and for stepping while observing pecking (Incompatible group). The Incompatible group, which had to counter-imitate for food reward, showed weaker discrimination performance than the Compatible group. This suggests that, like humans, budgerigars are subject to 'automatic imitation'; they cannot inhibit online the tendency to imitate pecking and/or stepping, even when imitation of these behaviours interferes with the performance of an ongoing task. The difference between the two groups persisted over 10 test sessions, but the Incompatible group eventually acquired the discrimination, making more counter-imitative than imitative responses in the final sessions. These results are consistent with the associative sequence learning model, which suggests that, across species, the development of imitation and the mirror system depends on sensorimotor experience and phylogenetically ancient mechanisms of associative learning.  相似文献   

14.
Bacosides, the effective component of standardised leaf extract of Bacopa monniera (BESEB CDRI-08) has been reported to have memory enhancing effect. Our previous reports suggested that BESEB CDRI-08 (BME) improves memory in postnatal rats by enhancing serotonin [5-hydroxytryptamine (5-HT)] metabolism, its transportation and subsequently activates 5-HT(3A) receptor during hippocampus-dependent learning. In this study, we examine whether the up-regulated 5-HT(3A) receptor activity by BME modulate microRNA 124-CREB pathway to enhance synaptic plasticity. Wistar rat pups received single dose of vehicle solution (0.5?% gum acacia?+?0.9?% saline)/BME (80?mg/kg)/mCPBG (10?mg/kg)/BME?+?mCPBG during the postnatal days (PND) 15-29. On PND 30, individuals were trained at brightness discrimination task and 24?h later, they were tested on the task. The BME treated group exhibited significantly lower percentage of errors during retention than acquisition. In addition, pre-miR-124 expression in hippocampus was significantly down-regulated in the BME and mCPBG?+?BME treated groups combined with a significant increase in the plasticity related genes, cAMP response element-binding protein, its phosphorylation and postsynaptic density protein 95. Our results suggest that this may be one of the mechanisms of bacosides present in BME for the memory enhancement.  相似文献   

15.
Octopus ocellatus is a small benthic species of octopus that is easy to rear and spawns large eggs during a short life cycle. These and other features of O. ocellatus may make it an advantageous subject for a broad range of behavioral studies, including those involving various types of learning. However, no type of learning has been studied in O. ocellatus. In a successive visual discrimination task, in which a ‘positive’ or ‘negative’ stimulus (white or black rectangle) was presented to a subject octopus and appropriate rewards or punishments were given to the subject, the rate of ‘correct’ responses (i.e., touches to the positive stimulus or refraining from the negative stimulus) gradually increased. Moreover, ‘observer’ octopuses that observed another octopus performing a visual discrimination task in which reward was also given to the ‘incorrect’ responses (touches to the negative stimulus) showed a higher ratio of incorrect responses in their test sessions. These results, coupled with the physical characteristics of O. ocellatus, indicate that this species is potentially suitable for neurogenetic and neuroembryological studies of learning.  相似文献   

16.
Abstract: Rats fed either a safflower oil (α-linolenate-deficient) or a perilla oil (α-linolenate-sufficient) diet through two generations (F1) showed significant differences in the brightness-discrimination learning task. In this task, correct responses were lever-pressing responses, which were reinforced with dietary pellets, and incorrect responses were those with no reinforcement. The inferior learning performance in the safflower oil group was caused mainly by the inferior ability to rectify the incorrect responses through the learning sessions. In the safflower oil group after the learning task, the average densities of synaptic vesicles in the terminals of the hippocampus CA1 region were decreased by nearly 30% as compared with those in the perilla oil group, and it is notable that this difference was not detected without the learning task. These results suggest that dietary oil-induced morphological changes in synapses in the hippocampus of rats are related to the differential learning performance and that the turnover rate of synaptic vesicles in the hippocampus may be an important factor affecting learning performance.  相似文献   

17.
E Dong  K Matsumoto  M Tohda  H Watanabe 《Life sciences》1999,64(19):1779-1784
Diazepam binding inhibitor (DBI) and its fragment, octadecaneuropeptide (ODN), are putative endogenous ligands for benzodiazepine (BZD) receptors and have been shown to act as an inverse BZD receptor agonist in the brain. A previous study suggested that the social isolation stress-induced decrease in pentobarbital sleep in mice was partly due to endogenous substances with an inverse BZD receptor agonist-like property. In this study, we examined the effects of DBI and ODN on pentobarbital sleep in group-housed and socially isolated mice to test the possible involvement of DBI and ODN in a social isolation-induced decrease in pentobarbital sleep. The socially isolated mice showed significantly shorter durations of pentobarbital (50 mg/kg, intraperitoneally, i. p.) sleep compared to the group-housed animals. When injected intracerebroventricularly (i.c.v.), DBI and ODN (3 and 10 nmol) dose-dependently shortened the pentobarbital-induced sleeping time in group-housed mice at the same dose range, but these peptides had no effect on the sleeping time in socially isolated animals. In contrast, flumazenil (16.5-33 nmol, i.c.v.), a BZD receptor antagonist, reversed the pentobarbital sleeping time in socially isolated mice to the level of group-housed animals without affecting the sleeping time in group-housed animals. The effects of DBI and ODN in group-housed mice were significantly blocked by flumazenil (33 nmol, i.c.v.). Moreover, the effect of flumazenil in socially isolated mice was significantly attenuated by DBI and ODN (10 nmol, i.c.v.). These results suggest that the changes in the activity of DBI and/or ODN are partly involved in the social isolation-induced decrease in the hypnotic action of pentobarbital in mice.  相似文献   

18.
Ninety-eight Sprague-Dawley rats, implanted with electrodes in the mesencephalic tegmentum (reticular activating system, RAS) served as subjects in two experiments. In the first experiment (n = 42) we investigated the effects of a RAS stimulation (5 μ A, 300 Hz, 90 sec in duration) on the acquisition of a positively reinforced light–dark discrimination in a T-maze. In the second experiment (n = 56) the reinforcement and the treatment were dissociated by comparing the effects of the RAS stimulation administered after correct or incorrect choices, during the same discrimination task.In the two experiments, despite large differences in learning conditions, the results show a considerable learning facilitation by administering the RAS stimulation immediately after each trial. This facilitation does not seem to be due to an interaction between reinforcement and stimulation, since the results of experiment 2 show the maximum facilitation in animals stimulated after each (non-reinforced) error, compared to subjects stimulated after each (reinforced) correct choice. These results are discussed both in terms of consolidation processes and in terms of comparison of the cue values of S+ and S- in a discriminative learning situation.  相似文献   

19.
The current study examined the effects of the D2 agonist (quinpirole) and D2 antagonist (eticlopride) on temporal discrimination performance in a conditional discrimination task (Experiment I) and a delayed conditional discrimination task (Experiment II). In both experiments rats discriminated between a scheduled stimulus duration of 3 s versus 9 s. Consistent with previous reports, overall discrimination performance decreased in a dose-dependent manner with both drugs. Changes in response bias (the tendency to choose-short or choose-long irrespective of actual stimulus duration), however, were best characterized in terms of both drugs tending to attenuate the bias effects normally observed during baseline drug-free performance. Specifically, the 'choose-short' bias observed in Experiment I and at a relatively short, 0.1 s, delay in Experiment II became less extreme with increasing doses. In addition, the 'choose-long' bias observed at a relatively long, 6 s, delay in Experiment II also became less extreme with increasing doses. Thus, whether there was an apparent shift from a short response bias to long, or vice versa, was the product of the delay interval between stimulus presentation and choice rather than whether the drug in question was a D2 agonist or antagonist. Such an attenuation of bias may have arisen because of subjects confounding the delay interval with the actual discriminative stimulus duration.  相似文献   

20.
Clonic seizures were induced in Swiss or DBA/2 mice by methyl-6-7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), 0.048 mmol/kg i.p., or by methyl-beta-carboline-3-carboxylate (beta-CCM), 0.044 mmol/kg i.p. Measurement of regional brain (cortex, hippocampus, striatum, and cerebellum) amino acid levels after 15 min of seizure activity showed increases in gamma-aminobutyric acid (GABA) (in all regions after beta-CCM, and in cortex and hippocampus after DMCM), and an increase in glycine in the striatum after beta-CCM. Aspartate levels fell (in cortex and hippocampus) after DMCM, but were unchanged in all regions after beta-CCM. Glutamate levels fell in cortex after beta-CCM and in striatum after DMCM. Pretreatment with the excitatory amino acid receptor antagonist, 2-amino-7-phosphonoheptanoic acid, 0.5 mmol/kg i.p., 45 min prior to the beta-carboline, significantly increased the ED50 for DMCM-induced clonic seizures (4.68 mumol/kg vs. 9.39 mumol/kg). Similar pretreatment did not significantly alter the ED50 for beta-CCM (4.22 mumol/kg vs. 6.6 mumol/kg). Pretreatment with 2-amino-7-phosphonoheptanoic acid, 1.0 mmol/kg, blocked the increase in GABA content produced by DMCM but not the fall in cortical aspartate content. Potassium-induced release of preloaded D-[3H]aspartate from rat cortical or hippocampal minislices was enhanced in the presence of DMCM (100 microM). In contrast, stimulated release of D-[3H]aspartate (from cortex or hippocampus) was not altered in the presence of beta-CCM (100 microM). Although DMCM and beta-CCM are both considered to induce convulsion by acting at the GABA--benzodiazepine receptor complex, the convulsions differ in several pharmacological and biochemical respects. It is suggested that enhanced release of excitatory amino acid neurotransmitters plays a more important role in seizures induced by DMCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号