首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雌激素信号通路概述   总被引:1,自引:0,他引:1  
过去几十年,人们一直认为雌激素信号通路是雌激素与细胞核中的雌激素受体(ER)结合,作用于雌激素受体反应元件调节基因表达,从而改变细胞功能。雌激素不但与核ER结合,也能与膜ER结合激活PI3K信号通路。G蛋白偶联受体(GPR30)也能与雌激素结合,激活PI3K信号通路。雌激素通过结合不同雌激素受体改变细胞生理功能。我们对雌激素信号通路做简要综述。  相似文献   

2.
3.
Estrogen has been reported to exert rapid effects on the function of neurons located in various brain regions, including those where classical estrogen receptors are not abundant, such as the striatum. The mechanism underlying these actions is not well understood, but does not appear to involve classical estrogen receptor-mediated genomic mechanisms. Estrogen has also been shown to regulate expression of immediate-early gene products in many tissues. In the present study, immunohistochemical methods were used to determine whether estrogen modulates the appearance of e-jun immunoreactivity (IR) in the striatum of rats. Administration of estradiol (100 μg/rat) to ovariectomized rats for 15 min induced a rapid and transient increase in c-jun-IR in the dorsomedial striatum and the core region of the nucleus accumbens. These data suggest that c-jun may serve as one of the rapidly responding mediators of estrogen action in the striatum and nucleus accumbens.  相似文献   

4.
Gonadal steroids affect a wide variety of functions in the mammalian brain ranging from the regulation of neuroendocrine systems and the modulation of behavior to the stimulation of differentiation and plasticity of distinct neuronal populations and circuits. The last decades have also demonstrated that estrogen serves as a neuroprotective factor for distinct neurodegenerative disorders. Such neuroprotective effects of estrogen are most obvious for Parkinson's and Alzheimer's disease. Despite this knowledge, little is known about the mechanisms and cellular targets by that estrogen might elicit its protective influence. In the past, we have intensively studied the effects of estrogen on midbrain dopaminergic neurons which represent the most affected cell population during Parkinson's disease. These studies were mainly performed on developing dopaminergic cells and revealed that estrogen is an important regulator of plasticity and function of this neuronal phenotype. Precisely, we found that dopaminergic neurons are direct targets for estrogen and that estrogen stimulates neurite extension/branching and the expression of tyrosine hydroxylase, the key enzyme in dopamine synthesis. Together with other in vivo studies, we might draw the conclusion that estrogen is required for the plasticity and activity of the developing and adult nigrostriatal system. The presence of the estrogen-synthesizing enzyme aromatase within the nigrostriatal system further supports this idea. Surprisingly, estrogen effects on nigrostriatal cell function are not only transmitted by classical nuclear estrogen receptors but also depend on nonclassical estrogen actions mediated through putative membrane receptors coupled to diverse intracellular signaling cascades. In the future, it has to be elucidated whether nonclassical mechanisms besides genomic actions also contribute to estrogen-mediated neuroprotection in the adult CNS.  相似文献   

5.
6.
7.
17β-estradiol is a hormone with far-reaching organizational, activational and protective actions in both male and female brains. The organizational effects of early estrogen exposure are essential for long-lasting behavioral and cognitive functions. Estradiol mediates many of its effects through the intracellular receptors, estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ). In the rodent cerebral cortex, estrogen receptor expression is high early in postnatal life and declines dramatically as the animal approaches puberty. This decline is accompanied by decreased expression of ERα mRNA. This change in expression is the same in both males and females in the developing isocortex and hippocampus. An understanding of the molecular mechanisms involved in the regulation of estrogen receptor alpha (ERα) gene expression is critical for understanding the developmental, as well as changes in postpubertal expression of the estrogen receptor. One mechanism of suppressing gene expression is by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. The decrease in ERα mRNA expression during development is accompanied by an increase in promoter methylation. Another example of regulation of ERα gene expression in the adult cortex is the changes that occur following neuronal injury. Many animal studies have demonstrated that the endogenous estrogen, 17β-estradiol, is neuroprotective. Specifically, low levels of estradiol protect the cortex from neuronal death following middle cerebral artery occlusion (MCAO). In females, this protection is mediated through an ERα-dependent mechanism. ERα expression is rapidly increased following MCAO in females, but not in males. This increase is accompanied by a decrease in methylation of the promoter suggesting a return to the developmental program of gene expression within neurons. Taken together, during development and in adulthood, regulation of ERα gene expression in the cortex can occur by DNA methylation and in a sex-dependent fashion in the adult brain.  相似文献   

8.
9.
Estrogen has been shown to affect vascular cell and arterial function in vitro and in vivo. Here we examined the ability of estradiol (E(2)) to cause rapid arterial dilation of elastic and muscular arteries in vivo and the mechanisms involved. E(2) administration caused a rapid increase in the outer wall diameter of both types of arteries in ovariectomized female mice. This resulted from estrogen receptor (ER)-mediated stimulation of nitric oxide production, demonstrated by preinjecting the mice arteries with a soluble inhibitor of nitric oxide (monomethyl l-arginine) and by showing the absence of E(2) action in eNOS-/- mice. Rapid activation of both ERK/MAP kinase and phosphatidylinositol 3-kinase activity was found in the E(2)-exposed arteries, and inhibiting either kinase prevented the vasodilatory action of E(2). Kinase activation and vasodilator responses to E(2) were absent in either ERalpha or ERbeta knock-out mice, implicating both receptor subtypes as mediating this E(2) action. These results indicate that E(2) modulation of arterial tonus through plasma membrane ER and rapid signaling could underlie many previously observed actions of estrogen reported to occur in women.  相似文献   

10.
Regulation of AMPA Receptors by Phosphorylation   总被引:5,自引:0,他引:5  
The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.  相似文献   

11.
12.
The female sex steroid, estradiol 17, mediates its effect through its association with estrogen receptor present in the target cell. So far the major emphasis has been given to the genomic actions of the hormone mediated by the nuclear estrogen receptors. Recent years have seen a shift in the ideas revealing the existence of estradiol binding entities both in the plasma membrane and the endoplasmic reticulum. Though the true identity of this membrane associated receptors is far from being known, a functional role for the same have been implicated both at the genomic as well as the non-genomic level. The major focus of the review is to highlight the existence of membrane associated estrogen receptors and receptor-related proteins and the functional roles played by some of them. The signalling events exerted by this class of membrane associated estrogen receptor could partly explain the physiological significance of estrogen in cardiovascular disease, osteoporosis and breast cancer as well as the molecular mechanism associated with xenoestrogen action.  相似文献   

13.
14.
Abstract

3H-Estradiol-estrogen receptor complexes were adsorbed on a column of heparin-agarose and subjected to a gradient of increasing concentrations of p-sec-amylphenol. At least five peaks of released 3H-estradiol were observed—demonstrating the existence of subsets of heparin-immobilized receptors with different affinities for estradiol. This finding is presented as further evidence for a functional microheterogeneity among estrogen receptors. The origin of the observed differences in estrogen receptors and possible relevance of the findings to receptor-mediated responses are discussed.  相似文献   

15.
Bone marrow thymocytes in part mediate the bone-preserving effects of estrogen by decreasing their production of osteoclast growth factors such as interleukin-1 and -6 and tumor necrosis factor alpha in the presence of physiological amounts of estradiol. Although several in vitro studies implicate the T-lymphocyte as a candidate mediator of estrogen signaling in the skeleton, whether these cells or any lymphocytes ordinarily express one or both nuclear estrogen receptors was previously unresolved. The purpose of our investigation was therefore to ascertain, by using real-time PCR, immmunoblotting, and cytometric techniques, if any of the nuclear estrogen receptors could be detected in normal peripheral blood mononuclear cells (PBMNC) collected from healthy volunteers. The results of immunoblotting experiments revealed that both estrogen receptor alpha (ESR1) and beta (ESR2) proteins are expressed in nuclei, but not in the cytoplasm of PBMNC harvested from all of the 15 healthy male and female volunteers (aged 23–50 years) we tested. PBMNCs contained mRNA coding for the two major full-length isoforms of ESR2 and the expression of ESR2 protein was localized within a lymphocyte subpopulation by cytometric analysis. Our data provide further evidence that lymphocytes and monocytes are responsive to estrogen and underscore its importance in modulating the immune response, as well as the vascular and skeletal health of men and women.  相似文献   

16.
17.
雌激素在生殖系统、认知记忆系统、骨骼和神经的发育及其功能维持等多种生理功能中扮演了重要的作用。近年来,在内耳发育及其功能研究过程中,许多学者发现在听力和平衡系统功能上的性别差异可能归根因于不同性别的雌激素水平差异。这些研究表明,雌激素及其受体在内耳发育、听力和平衡系统功能维持上也具有重要作用。该文用一个新的视角聚焦于雌激素及其受体在内耳发育和功能上的研究进展。该综述能为进一步研究雌激素在听力和平衡系统中的作用机制及相关疾病的临床治疗提供参考。  相似文献   

18.
Estrogen receptors and androgen receptors in the mammalian liver   总被引:2,自引:0,他引:2  
An estrogen receptor and an androgen receptor are present in the mammalian liver. In the liver of the rat, the estrogen receptor concentration increases markedly at puberty and this change correlates with enhanced estrogen stimulation of plasma renin substrate synthesis. High doses of estrogen are required for nuclear binding in liver when compared to doses for the uterus. The high dose requirement appears to be predominantly due to extensive metabolism in the hepatocyte of the estrogen to inactive derivatives. Furthermore, estradiol is much weaker than ethinyl estradiol for promoting nuclear binding in the liver. This is due to extremely rapid and extensive metabolism of estradiol. In human liver the concentration of estrogen receptor is low. An androgen receptor is present in high concentration in rabbit liver and is located predominantly in the nucleus after androgen administration. High concentrations of a putative androgen receptor are also present in human liver cytosol. Preliminary studies indicate that synthetic progestins can attach to the human liver androgen receptor. To date, a progesterone receptor has not been found in the mammalian liver. Thus, it appears that extensive steroid metabolism in liver preferentially diminishes sex steroid interaction with liver receptors and that androgen receptors may mediate progestin effects in liver. These observations provide a scientific basis for improved safety of oral contraceptives. Lowering the estrogen and progestin doses in oral contraceptives will decrease the major side-effects, which are liver mediated, and still maintain the desired effects at the hypothalamic-pituitary axis and uterus. Furthermore, it is likely that by selecting which estrogen, progestin or androgen is administered as well as by utilizing a parenteral route of administration that sex steroid effects on the liver could be minimized.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号