首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Harpin HrpZ is one of the most abundant proteins secreted through the pathogenesis-associated type III secretion system of the plant pathogen Pseudomonas syringae. HrpZ shows membrane-binding and pore-forming activities in vitro, suggesting that it could be targeted to the host cell plasma membrane. We studied the native molecular forms of HrpZ and found that it forms dimers and higher order oligomers. Lipid binding by HrpZ was tested with 15 different membrane lipids, with HrpZ interacting only with phosphatidic acid. Pore formation by HrpZ in artificial lipid vesicles was found to be dependent on the presence of phosphatidic acid. In addition, HrpZ was able to form pores in vesicles prepared from Arabidopsis thaliana plasma membrane, providing evidence for the suggested target of HrpZ in the host. To map the functions associated with HrpZ, we constructed a comprehensive series of deletions in the hrpZ gene derived from P. syringae pv. phaseolicola, and studied the mutant proteins. We found that oligomerization is mainly mediated by a region near the C-terminus of the protein, and that the same region is also essential for membrane pore formation. Phosphatidic acid binding seems to be mediated by two regions separate in the primary structure. Tobacco, a nonhost plant, recognizes, as a defence elicitor, a 24-amino-acid HrpZ fragment which resides in the region indispensable for the oligomerization and pore formation functions of HrpZ.  相似文献   

2.
Microbe- or host damage-derived patterns mediate activation of pattern-triggered immunity (PTI) in plants. Microbial virulence factor (effector)-triggered immunity (ETI) constitutes a second layer of plant protection against microbial attack. Various necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) produced by bacterial, oomycete and fungal microbes are phytotoxic virulence factors that exert immunogenic activities through phytotoxin-induced host cell damage. We here show that multiple cytotoxic NLPs also carry a pattern of 20 amino acid residues (nlp20) that triggers immunity-associated plant defenses and immunity to microbial infection in Arabidopsis thaliana and related plant species with similar characteristics as the prototype pattern, bacterial flagellin. Characteristic differences in flagellin and nlp20 plant responses exist however, as nlp20s fail to trigger extracellular alkalinization in Arabidopsis cell suspensions and seedling growth inhibition. Immunogenic nlp20 peptide motifs are frequently found in bacterial, oomycete and fungal NLPs. Such an unusually broad taxonomic distribution within three phylogenetic kingdoms is unprecedented among microbe-derived triggers of immune responses in either metazoans or plants. Our findings suggest that cytotoxic NLPs carrying immunogenic nlp20 motifs trigger PTI in two ways as typical patterns and by inflicting host cell damage. We further propose that conserved structures within a microbial virulence factor might have driven the emergence of a plant pattern recognition system mediating PTI. As this is reminiscent of the evolution of immune receptors mediating ETI, our findings support the idea that there is a continuum between PTI and ETI.  相似文献   

3.
4.
Activation of antiviral innate immune responses depends on the recognition of viral components or viral effectors by host receptors. This virus recognition system can activate two layers of host defence, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). While ETI has long been recognized as an efficient plant defence against viruses, the concept of antiviral PTI has only recently been integrated into virus–host interaction models, such as the RNA silencing-based defences that are triggered by viral dsRNA PAMPs produced during infection. Emerging evidence in the literature has included the classical PTI in the antiviral innate immune arsenal of plant cells. Therefore, our understanding of PAMPs has expanded to include not only classical PAMPS, such as bacterial flagellin or fungal chitin, but also virus-derived nucleic acids that may also activate PAMP recognition receptors like the well-documented phenomenon observed for mammalian viruses. In this review, we discuss the notion that plant viruses can activate classical PTI, leading to both unique antiviral responses and conserved antipathogen responses. We also present evidence that virus-derived nucleic acid PAMPs may elicit the NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASE 1 (NIK1)-mediated antiviral signalling pathway that transduces an antiviral signal to suppress global host translation.  相似文献   

5.
杨德卫  李生平  崔海涛  邹声浩  王伟 《遗传》2020,(3):278-286,I0002-I0009
近年来,大量的植物抗病基因和病原菌无毒基因被克隆,抗病基因和无毒基因的结构、功能及其互作关系的研究也取得重大进展。在植物中,由病原菌模式分子(pathogen-associated molecular patterns, PAMPs)引发的免疫反应(PAMP-triggered immunity, PTI)和由效应因子引发的免疫反应(effector-triggered immunity, ETI)是植物在长期进化过程中形成的两类抵抗病原物的机制。PTI反应主要通过细胞表面受体(patternrecognition receptors, PRRs)识别并结合PAMPs从而激活下游免疫反应,而在ETI反应中,则通过植物R基因(resistance gene,R)与病原菌无毒基因(avirulence gene, Avr)产物间的直接或间接相互作用来完成免疫反应。本文对植物PTI反应和ETI反应分别进行了概述,重点探讨了植物R基因与病原菌Avr基因之间的互作遗传机理,并对目前植物抗性分子遗传机制研究和抗病育种中的问题进行了探讨和展望。  相似文献   

6.
Plants use pattern recognition receptors (PRRs) to perceive pathogen-associated molecular pattern (PAMPs) and initiate defence responses. PAMP-triggered immunity (PTI) plays an important role in general resistance, and constrains the growth of most microbes on plants. Despite the importance of PRRs in plant immunity, the vast majority of them remain to be identified. We recently showed that the Arabidopsis LysM receptor kinase CERK1 is required not only for chitin signalling and fungal resistance, but plays an essential role in restricting bacterial growth on plants. We proposed that CERK1 may mediate the perception of a bacterial PAMP, or an endogenous plant cell wall component released during infection, through its extracellular carbohydrate-binding LysM-motifs. Here we report reduced activation of a PAMP-induced defence response on plants lacking the CERK1 gene after treatment with crude bacterial extracts. This demonstrates that CERK1 mediates perception of an unknown bacterial PAMP in Arabidopsis.Key words: PAMP, PRR, PTI, LysM, chitin, bacteria, carbohydrate  相似文献   

7.
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.  相似文献   

8.
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism’s life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant–pathogen interactions and integrated defense responses in rice.  相似文献   

9.
Bacterial pathogens of plant and animals share a homologous group of virulence factors, referred to as the YopJ effector family, which are translocated by the type III secretion (T3S) system into host cells during infection. Recent work indicates that some of these effectors encode acetyltransferases that suppress host immunity. The YopJ-like protein AvrBsT is known to activate effector-triggered immunity (ETI) in Arabidopsis thaliana Pi-0 plants; however, the nature of its enzymatic activity and host target(s) has remained elusive. Here we report that AvrBsT possesses acetyltransferase activity and acetylates ACIP1 (for ACETYLATED INTERACTING PROTEIN1), an unknown protein from Arabidopsis. Genetic studies revealed that Arabidopsis ACIP family members are required for both pathogen-associated molecular pattern (PAMP)-triggered immunity and AvrBsT-triggered ETI during Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000) infection. Microscopy studies revealed that ACIP1 is associated with punctae on the cell cortex and some of these punctae co-localize with microtubules. These structures were dramatically altered during infection. Pst DC3000 or Pst DC3000 AvrRpt2 infection triggered the formation of numerous, small ACIP1 punctae and rods. By contrast, Pst DC3000 AvrBsT infection primarily triggered the formation of large GFP-ACIP1 aggregates, in an acetyltransferase-dependent manner. Our data reveal that members of the ACIP family are new components of the defense machinery required for anti-bacterial immunity. They also suggest that AvrBsT-dependent acetylation in planta alters ACIP1''s defense function, which is linked to the activation of ETI.  相似文献   

10.
The bacterial plant pathogen Pseudomonas syringae injects effector proteins into plant cells via a type III secretion system (T3SS), which is required for pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a fully functional T3SS. A hrpJ mutant is non-pathogenic and cannot inject effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ mutant also cannot secrete the harpins HrpW1 and HopAK1 or the translocator HrpK1, suggesting that these proteins are required in the translocation (injection) of effectors into plant cells. Complementation of the hrpJ mutant with secretion incompetent HrpJ derivatives restores the secretion of HrpZ1 and HrpW1 and the ability to elicit a hypersensitive response, a measure of translocation. However, growth in planta and disease symptom production is only partially restored, suggesting that secreted HrpJ may have a direct role in virulence. Transgenic Arabidopsis plants expressing HrpJ-HA complemented the virulence phenotype of the hrpJ mutant expressing a secretion incompetent HrpJ derivative and were reduced in their immune responses. Collectively, these data indicate that HrpJ has a dual role in P. syringae: inside bacterial cells HrpJ controls the secretion of translocator proteins and inside plant cells it suppresses plant immunity.  相似文献   

11.
Zhang Z  Wu Y  Gao M  Zhang J  Kong Q  Liu Y  Ba H  Zhou J  Zhang Y 《Cell host & microbe》2012,11(3):253-263
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.  相似文献   

12.
Pathogen/microbe-associated molecular patterns(PAMPs/MAMPs) are recognized by plant pattern recognition receptors(PRRs)localized on the cell surface to activate immune responses.This PAMP-triggered immunity(PTI) confers resistance to a broad range of pathogenic microbes and,therefore,has a great potential for genetically engineering broad-spectrum resistance by transferring PRRs across plant families.Pathogenic effectors secreted by phytopathogens often directly target and inhibit key components of PTI signaling pathways via diverse biochemical mechanisms.In some cases,plants have evolved to produce decoy proteins that mimic the direct virulence target,which senses the biochemical activities of pathogenic effectors.This kind of perception traps the effectors of erroneous targeting and results in the activation of effector-triggered immunity(ETI) instead of suppressing PTI.This mechanism suggests that artificially designed decoy proteins could be used to generate new recognition specificities in a particular plant.In this review,we summarize recent advances in research investigating PAMP recognition by PRRs and virulence effector surveillance by decoy proteins.Successful expansion of recognition specificities,conferred by the transgenic expression of EF-Tu receptor(EFR) and AvrPphB susceptible 1(PBS1) decoys,has highlighted the considerable potential of PRRs and artificially designed decoys to expand plant resistance spectra and the need to further identify novel PRRs and decoys.  相似文献   

13.
Plant pathogenic bacterial type III effectors subdue host responses   总被引:2,自引:0,他引:2  
Like animals, plants sense bacterial pathogens through surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat proteins (NB-LRR) and trigger defense responses. Many plant-pathogenic bacteria secrete a large repertoire of effector proteins into host cells to modulate host responses, enabling successful infection and multiplication in plants. A number of these effector proteins target plant innate immunity signaling pathways, while others induce specific host genes to enhance plant susceptibility. Substantial progress has been made in the past two years concerning biochemical function of effectors and their host targets. These advances provide new insights into regulatory mechanisms of plant immunity and host-pathogen co-evolution.  相似文献   

14.
Plasma membrane compartmentalization spatiotemporally regulates cell-autonomous immune signaling in animal cells. To elucidate immediate early protein dynamics at the plant plasma membrane in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin (flg22) we employed quantitative mass spectrometric analysis on detergent-resistant membranes (DRMs) of Arabidopsis thaliana suspension cells. This approach revealed rapid and profound changes in DRM protein composition following PAMP treatment, prominently affecting proton ATPases and receptor-like kinases, including the flagellin receptor FLS2. We employed reverse genetics to address a potential contribution of a subset of these proteins in flg22-triggered cellular responses. Mutants of three candidates (DET3, AHA1, FER) exhibited a conspicuous defect in the PAMP-triggered accumulation of reactive oxygen species. In addition, these mutants showed altered mitogen-activated protein kinase (MAPK) activation, a defect in PAMP-triggered stomatal closure as well as altered bacterial infection phenotypes, which revealed three novel players in elicitor-dependent oxidative burst control and innate immunity. Our data provide evidence for dynamic elicitor-induced changes in the membrane compartmentalization of PAMP signaling components.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades.  相似文献   

16.
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pathogens of soybeans. SCN is an obligate and sedentary parasite that transforms host plant root cells into an elaborate permanent feeding site, a syncytium. Formation and maintenance of a viable syncytium is an absolute requirement for nematode growth and reproduction. In turn, sensing pathogen attack, plants activate defence responses and may trigger programmed cell death at the sites of infection. For successful parasitism, H. glycines must suppress these host defence responses to establish and maintain viable syncytia. Similar to other pathogens, H. glycines engages in these molecular interactions with its host via effector proteins. The goal of this study was to conduct a comprehensive screen to identify H. glycines effectors that interfere with plant immune responses. We used Nicotiana benthamiana plants infected by Pseudomonas syringae and Pseudomonas fluorescens strains. Using these pathosystems, we screened 51 H. glycines effectors to identify candidates that could inhibit effector-triggered immunity (ETI) and/or pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We identified three effectors as ETI suppressors and seven effectors as PTI suppressors. We also assessed expression modulation of plant immune marker genes as a function of these suppressors.  相似文献   

17.

Background

Plants have two related immune systems to defend themselves against pathogen attack. Initially, pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses.

Results

We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling.

Conclusions

Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0492-1) contains supplementary material, which is available to authorized users.  相似文献   

18.
Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.  相似文献   

19.
20.
An immune response is triggered in host cells when host receptors recognize conserved molecular motifs, pathogen-associated molecular patterns (PAMPs), such as β-glucans, and chitin at the cell surface of a pathogen. Effector-triggered immunity occurs when pathogens deliver effectors into the host cell to suppress the first immune signaling. Using a differential proteomic approach, we identified an array of proteins responding to aflatoxins in cotyledons of peanut (Arachis hypogaea) infected with aflatoxin-producing (toxigenic) but not nonaflatoxin-producing (atoxigenic) strains of Aspergillus flavus. These proteins are involved in immune signaling and PAMP perception, DNA and RNA stabilization, induction of defense, innate immunity, hypersensitive response, biosynthesis of phytoalexins, cell wall responses, peptidoglycan assembly, penetration resistance, condensed tannin synthesis, detoxification, and metabolic regulation. Gene expression analysis confirmed the differential abundance of proteins in peanut cotyledons supplemented with aflatoxins, with or without infection with the atoxigenic strain. Similarly, peanut germination and A. flavus growth were altered in response to aflatoxin B1. These findings show an additional immunity initiated by aflatoxins. With the PAMP- and effector-triggered immune responses, this immunity constitutes the third immune response of the immune system in peanut cotyledon cells. The system is also a three-grade coevolution of plant-pathogen interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号