首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The capacity of acyl-CoA:cholesterol O-acyltransferase (ACAT) 2 to differentiate cholesterol from the plant sterol, sitosterol, was compared with that of the sterol esterifying enzymes, ACAT1 and lecithin:cholesterol acyltransferase (LCAT). Cholesterol-loaded microsomes from transfected cells containing either ACAT1 or ACAT2 exhibited significantly more ACAT activity than their sitosterol-loaded counterparts. In sitosterol-loaded microsomes, both ACAT1 and ACAT2 were able to esterify sitosterol albeit with lower efficiencies than cholesterol. The mass ratios of cholesterol ester to sitosterol ester formed by ACAT1 and ACAT2 were 1.6 and 7.2, respectively. Compared with ACAT1, ACAT2 selectively esterified cholesterol even when sitosterol was loaded into the microsomes. To further characterize the difference in sterol specificity, ACAT1 and ACAT2 were compared in intact cells loaded with either cholesterol or sitosterol. Despite a lower level of ACAT activity, the ACAT1-expressing cells esterified 4-fold more sitosterol than the ACAT2 cells. The data showed that compared with ACAT1, ACAT2 displayed significantly greater selectively for cholesterol compared with sitosterol. The plasma cholesterol esterification enzyme lecithin:cholesterol acyltransferase was also compared. With recombinant high density lipoprotein particles, the esterification rate of cholesterol by LCAT was only 15% greater than for sitosterol. Thus, LCAT was able to efficiently esterify both cholesterol and sitosterol. In contrast, ACAT2 demonstrated a strong preference for cholesterol rather than sitosterol. This sterol selectivity by ACAT2 may reflect a role in the sorting of dietary sterols during their absorption by the intestine in vivo.  相似文献   

2.
Studies with Gibberella fujikuroi have been designed to examine the relationship between the biosynthesis and function of fungal sterols. Evidence was obtained through appropriate feeding and trapping experiments for the existence of multiple end products which are produced by separate routes in the later stages of sterol biosynthesis. The three end products, ergosterol (24 beta-methylcholesta-5,7,22E-trien-3 beta-ol), brassicasterol (24 beta-methylcholesta-5,22E-dien-3 beta-ol), and 22(23)-dihydrobrassicasterol (24 beta-methyl-cholesterol), were found to be non-interconvertible during logarithmic phase growth; thus the metabolic route delta 5,7,22-24 beta-CH3----delta 5,22-24 beta-CH3----delta 5-24 beta-CH3 was ruled out. Ergosterol can be further metabolized, viz., to 24 beta-methylcholesta-5,7,9(11),22-tetraen-3 beta-ol, but only as the culture enters into the stationary phase. In the presence of growth inhibitory concentrations of 2,3-iminosqualene, a partial reversal of growth cessation was obtained when all three sterols were concurrently supplied to the medium. Since neither ergosterol nor the other two sterols added individually to the medium was able to overcome the inhibitor's deleterious effect, ergosterol cannot play a dual architectural role (bulk and regulatory) in this fungus as it apparently can do in other fungal systems, i.e., yeast. For G. fujikuroi each sterol end product appears to possess a unique physiological role. Mycelial growth requires more than simply ergosterol.  相似文献   

3.
1. The esterification of cholesterol was studied in Tetrahymena pyriformis an organism which does not synthesize sterols nor are sterols required for growth. 2. Microsomes catalyzed the esterification of cholesterol in the presence of oleoyl-CoA but not oleic acid or lecithin. 3. The enzyme has a similar sterol substrate specificity to that of mammalian acyl-CoA: cholesterol acyltransferase (ACAT) and was inhibited by the specific ACAT inhibitor 58-035. 4. The enzyme is constitutive since activity was observed in cells grown in sterol-free medium when cholesterol was added to the in vitro assay.  相似文献   

4.
In mammals, the esterification of sterols by ACAT plays a critical role in eukaryotic lipid homeostasis. Using the predominant isoform of the yeast ACAT-related enzyme family, Are2p, as a model, we targeted phylogenetically conserved sequences for mutagenesis in order to identify functionally important motifs. Deletion, truncation, and missense mutations implicate a regulatory role for the amino-terminal domain of Are2p and identified two carboxyl-terminal motifs as required for catalytic activity. A serine-to-leucine mutation in the (H/Y)SF motif (residues 338-340), unique to sterol esterification enzymes, nullified the activity and stability of yeast Are2p. Similarly, a tyrosine-to-alanine change in the FYxDWWN motif of Are2p (residues 523-529) produced an enzyme with decreased activity and apparent affinity for oleoyl-CoA. Mutagenesis of the tryptophan residues in this motif completely abolished activity. In human ACAT1, mutagenesis of the corresponding motifs (residues 268-270, and 403-409, respectively) also nullified enzymatic activity. On the basis of their critical roles in enzymatic activity and their sequence conservation, we propose that these motifs mediate sterol and acyl-CoA binding by this class of enzymes.  相似文献   

5.
Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.  相似文献   

6.
M Kobayashi  H Mitsuhashi 《Steroids》1975,26(5):605-624
The sterols of the scallop, Patinopecten yessoensis Jay, was found to contain over 20 components. The major components were delta5-sterols, and lesser amount of ring-saturated sterols were also present. Biogenetically unusual C26 sterols (24-norcholesta-5,22-dien-3beta-ol and 24-norcholest-22-en-3beta-ol) and 24(28)-cis-24-propylidenecholest-5-en-3beta-ol (29-methylisofucosterol), 22-trans-27-nor-(24S)-24-methylcholesta-5,22-dien-3beta-ol (occelasterol), and a new sterol, 22-trans-27-nor-(24S)-24-methylcholest-22-en-3beta-ol (patinosterol), were isolated and their structures were confirmed. Occurrence of 22-trans-(24S)-24-methylcholesta-5,22-dien-3beta-ol (24-epibrassicasterol) was confirmed. 22-cis-Cholesta-5,22-dien-3beta-ol was not found.  相似文献   

7.
The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ~70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.  相似文献   

8.
Rabbits were fed either 10% coconut oil, 10% coconut oil and 1% beta-sitosterol, 10% coconut oil and 1% cholesterol, or 10% coconut oil and 1% beta-sitosterol plus 1% cholesterol for 4 weeks. Microsomal membranes from intestines of animals fed the 1% beta-sitosterol diet had 48% less cholesterol and were enriched twofold in beta-sitosterol compared to membranes from animals fed the coconut oil diet alone. Acylcoenzyme A:cholesterol acyltransferase (ACAT) activity in jejunum and ileum was decreased significantly in animals fed the plant sterol alone. In membranes from animals fed 1% beta-sitosterol and 1% cholesterol, beta-sitosterol content increased 50% whereas cholesterol was modestly decreased compared to their controls fed only cholesterol. Intestinal ACAT was unchanged in the animals fed both sterols when compared to their controls. beta-Sitosterol esterification was determined by incubating intestinal microsomal membranes with either [(14)C]beta-sitosterol-albumin emulsion or [(14)C]beta-sitosterol:dipalmitoyl phosphatidylcholine (DPPC) liposomes to radiolabel the endogenous sterol pool. Oleoyl-CoA was then added. The CoA-dependent esterification rate of beta-sitosterol was very slow compared to that of cholesterol using both techniques. An increased amount of endogenous microsomal beta-sitosterol, which occurs in animals fed 1% beta-sitosterol, did not interfere with the stimulation of ACAT activity secondary to cholesterol enrichment of the membranes. Enriching microsomal membranes three- to five-fold with beta-sitosterol did not affect ACAT activity. Freshly isolated intestinal cells were incubated for 1 hour with [(3)H]oleic acid and beta-sitosterol:DPPC or 25-hydroxycholesterol:DPPC. Incorporation of oleic acid into cholesteryl esters did not change in the presence of beta-sitosterol but increased fourfold after the addition of 25-hydroxycholesterol. We conclude that the CoA-dependent esterification rate of cholesterol is at least 60 times greater than that of beta-sitosterol. Membrane beta-sitosterol does not interfere with nor compete with cholesterol esterification. Inadequate esterification of this plant sterol may play a role in the poor absorption of beta-sitosterol by the gut.-Field, F. J., and S. N. Mathur. beta-Sitosterol: esterification by intestinal acylcoenzyme A:cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification.  相似文献   

9.
1. [3-3H]-Squalene was fed to 11 marine sponges containing a mixture of "common" sterol side chains. All of these sponges possess significant quantities of cholesterol, but their ability to biosynthesize it differs widely. 2. All the sponges possess significant quantities of delta 22 sterols, yet none of them was able to introduce the delta 22 double bond. 22-Dehydro-24-norcholesterol and 24-methyl-22-dehydro-27-norcholesterol side chains also originate from the diet. 3. These sponges biosynthesized between 40 and 80% of their sterols, a typical value being 70%. The remainder is derived from the diet or by modification of dietary sterols.  相似文献   

10.
Ruan B  Lai PS  Yeh CW  Wilson WK  Pang J  Xu R  Matsuda SP  Schroepfer GJ 《Steroids》2002,67(13-14):1109-1119
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.  相似文献   

11.
We have investigated the metabolism of exogenously provided delta24-sterols by whole cell cultures of a polyene-resistant mutant (D10) of Candida albicans blocked at removal of the C-14 methyl group. Comparison of the relative efficiencies of transmethylation at C-24 of selected sterol substrates revealed the following substrate preferences of the Candida delta24-sterol methyltransferase (EC 2.1.1.41): zymosterol greater than 4alpha-methylzymosterol greater than 14alpha-methylzymosterol. Exogenous 4,4-dimethylzymosterol was not transmethylated by mutant D10. Incorporation of the 14C-labelled methyl group of S-adenosyl-L-[methyl-14C]methionine into the sterols of a D10 culture preloaded with zymosterol indicated that zymosterol was a better (40 X) substrate than endogenous lanosterolmfeeding zymosterol to D10 and a polyene-resistant strain of Saccharomyces cerevisiae (Nys-P100) that was also blocked at removal of the C-14 methyl group gave 24-methyl sterols possessing delta22 and ring B unsaturation. Mutant D10 was able to produce ergosterol from zymosterol whereas Nys-P100 produced ergosta-7,22-dienol. When grown in the presence of 3 micrometer 25-aza-24,25-dihydrozymosterol, a known inhibitor of the delta24-sterol methyltransferase, Nys-P100 accumulated 14alpha-methylzymosterol, a minor metabolite in this mutant under normal growth conditions and hitherto unidentified as a yeast sterol.  相似文献   

12.
The properties of an enzyme in rat liver microsomes was described that catalyzed the formation of 25-hydroxycholesteryl ester in the presence of labeled sterol and oleoyl-CoA. The reaction was similar in several respects to that of cholesteryl ester formation by acyl-CoA: cholesterol acyltransferase. Trypsin pretreatment of microsomes inhibited the esterification of both sterols and a similar dose-dependent inhibition was produced by addition of progesterone and several androgens. Microsomes with an enhanced cholesterol content resulting from in vivo treatment with ethinyl estradiol showed increased esterifying activity towards both cholesterol and 25-hydroxycholesterol. Esterification of endogenous microsomal cholesterol was increased by the addition of 25-hydroxycholesterol, concomitant with 25-hydroxycholesteryl ester formation. To assess the relationship between the association of sterols with membranes and sterol ester formation, microsomes were preincubated with either sterol, reisolated by ultracentrifugation in a density gradient and then analyzed chemically or enzymatically. Cholesterol and 25-hydroxycholesterol both associated with microsomes and the added sterol was subsequently esterified. Maximal esterification was only partially dependent on the amount bound. Progesterone, which inhibited sterol esterification, did not bind to microsomes and no inhibition was observed in reisolated microsomes, indicating that the inhibition produced by progesterone was reversible.  相似文献   

13.
The effect of sterol carrier protein2 (SCP2) purified from rat liver on the formation of cholesterol esters by acyl-CoA: cholesterol acyl-transferase (ACAT: EC 2.3.1.26) in rat adrenal microsomes was studied. The rate of incorporation of [1-14C]oleoyl-CoA into cholesteryl oleate was determined in the presence or absence of exogenously added cholesterol or SCP2, or both. The addition of SCP2 had no effect on the formation of cholesterol esters from endogenous cholesterol by ACAT in rat adrenal microsomes. In contrast, the formation of cholesterol esters from exogenous cholesterol by ACAT was dose-dependently increased by the addition of SCP2. These experiments showed that SCP2 had an enhancing effect on cholesterol esterification by ACAT in rat adrenal microsomes most likely by modulating the availability of exogenous cholesterol and that SCP2 may participate in the formation of cholesterol esters in the rat adrenal gland.  相似文献   

14.
3beta-Hydroxy sterols occurring at a concentration of at least 0.001% of the sterol mixtures of Pseudoplexaura porosa and Plexaura homomalla have been fractionated using a series of refined techniques and subsequently analyzed using combined gas chromatography-mass spectrometry (GC-MS) in the development of a procedure for examining the minor and trace components of marine sterol mixtures. A total of 49 sterols were found which spanned a molecular weight range of 274 to 440. In addition delta4-3-keto analogs of cholesterol, 24-methylcholesterol and gorgosterol were found in the extracts of P. homomalla. Initial separation of various natural sterol-containing conjugates and free sterols was found to have a number of advantages. Fractional digitonin precipitation and alumina column chromatography were found to possess greater sterol separation abilities than previously recognized. Many of the minor sterols were found to possess novel structures including a series of short side chain sterols, 19-nor sterols, 5beta-stanols and 4-monomethyl sterols for which structure elucidation work is continuing.  相似文献   

15.
《Process Biochemistry》2007,42(9):1335-1341
Soybean oil deodorizer distillate (SODD) was enzymatically modified to obtain a product mixture comprised mainly of sterol esters, tocopherols, and fatty acid ethyl esters. Firstly, the original SODD was mixed with oleic acid to reduce its melting point from 65–70 to 30–35 °C and also to produce a reaction mixture with a ratio of free fatty acids (FFA) to sterols close to 2 to improve the progress of sterols esterification. Two enzymatic steps were used in order to separate sterols esterification and ethyl esterification in time and space. The first enzymatic step (in the presence of Candida rugosa lipase) allowed to efficiently transform more than 90% of the original sterols in a short period of time (5 h). The second enzymatic step (in the presence of Novozym 435) converted more than 95% of the FFA in less than 3 h. In addition, the stability of both biocatalysts has been evaluated and both bioprocesses have been scaled-up reutilizing the same batch of lipase up to 8 and 3 times for the first and the second enzymatic step, respectively. The final product obtained is intended to be used as starting material for the purification of sterol esters, tocopherols, and fatty acid ethyl esters via supercritical fluid extraction.  相似文献   

16.
Two enzymes are responsible for cholesterol ester formation in tissues, acyl coenzyme A:cholesterol acyltransferase types 1 and 2 (ACAT1 and ACAT2). The available evidence suggests different cell locations, membrane orientations, and metabolic functions for each enzyme. ACAT1 and ACAT2 gene disruption experiments in mice have shown complementary results, with ACAT1 being responsible for cholesterol homeostasis in the brain, skin, adrenal, and macrophages. ACAT1 -/- mice have less atherosclerosis than their ACAT1 +/+ counterparts, presumably because of the decreased ACAT activity in the macrophages. By contrast, ACAT2 -/- mice have limited cholesterol absorption in the intestine, and decreased cholesterol ester content in the liver and plasma lipoproteins. Almost no cholesterol esterification was found when liver and intestinal microsomes from ACAT2 -/- mice were assayed. Studies in non-human primates have shown the presence of ACAT1 primarily in the Kupffer cells of the liver, in non-mucosal cell types in the intestine, and in kidney and adrenal cortical cells, whereas ACAT2 is present only in hepatocytes and in intestinal mucosal cells. The membrane topology for ACAT1 and ACAT2 is also apparently different, with ACAT1 having a serine essential for activity on the cytoplasmic side of the endoplasmic reticulum membrane, whereas the analogous serine is present on the lumenal side of the endoplasmic reticulum for ACAT2. Taken together, the data suggest that cholesterol ester formation by ACAT1 supports separate functions compared with cholesterol esterification by ACAT2. The latter enzyme appears to be responsible for cholesterol ester formation and secretion in lipoproteins, whereas ACAT1 appears to function to maintain appropriate cholesterol availability in cell membranes.  相似文献   

17.
The functional importance of structural features of ergosterol in yeast.   总被引:6,自引:0,他引:6  
As an approach to the study of the relationship between the structure of sterols and their capacity to function in the lipid leaflet of membranes, various sterols were examined for their ability to support the growth of anaerobic Saccharomyces cerevisiae. A marked dependence on precise structural features was observed in growth-response and morphology. Of the chemical groups which distinguish ergosterol, the main sterol of S. cerevisiae, the hydroxyl group at C-3 was obligatory, and the other groups were found to be of the following relative importance: 24beta-methyl-delta22-grouping greater than 24beta-methyl group greater than delta5,7-diene system = delta5-bond approximately or equal to no double bond. Methyl groups at C-4 and C-14 were inconsistent with activity. Consequently, the data strongly suggest that the normal biosynthetic processes removal of methyl groups from the nucleus and introduction of one in the side chain are of functional significance. A double bond between C-17 and C-20 joining the steroidal side chain to the nucleus had no deleterious effect on the growth process but only if C-22 was trans-oriented to C-13. In the cis-case no growth at all proceeded. This means the natural sterol probably acts functionally in the form of its preferred conformer in which C-22 is to the right ("right-handed") in the usual view. Since the placing of a substituent (OH or CH3) in the molecule at C-20 in such a way that it appears on the front side in the right-handed conformer completely destroyed activity, the sterol apparently presents its front face to protein or phospholipid when complexing occurs.  相似文献   

18.
The membrane-bound enzyme of microsomes obtained from sunflower embryos that catalyzes the bi-substrate transfer reaction whereby the methyl group of (S)-adenosyl-L-methionine is transferred to C-24 of the sterol side chain has been investigated. Optimal incubation conditions for assay of the microsomal (S)-adenosyl-L-methionine:sterol delta 24-methyl transferase (SMT) have been established for the first time. The microsomal preparation was found to catalyze the formation of a delta 24(28)-sterol and to be free of contaminating methyl transferase enzymes, e.g. those which form delta 23-24 methyl sterols (cyclosadol) and delta 25-24 beta-methyl sterols (cyclolaudenol) and other sterolic enzymes which might transform the acceptor molecule to metabolites which could compete in the assay with the test substrate. From a series of incubations with 27 sterol and sterol-like (triterpenoids) substrates of which 23 compounds possessed a 24,25-double bond, we observed a marked dependence on precise structural features and three-dimensional shape of the acceptor molecule in its ability to be transformed by the SMT. In contrast to the yeast SMT where cycloartenol fails to bind to the SMT and zymosterol is the best substrate for methylation, the sunflower SMT studied here utilizes cycloartenol preferentially to zymosterol and the other substrates. Of the chemical groups which distinguishes cycloartenol, a free 3 beta-OH,9 beta,19-cyclopropyl group, trimethylated saturated nucleus, and delta 24-double bond, only the nucleophilic centers at C-3 and C-24 were obligatory for substrate binding and methylation. Of the bent or flat conformations which cycloartenol may orient in the enzyme-substrate complex, our results indicate a selection for acceptor molecules which possess the shape that closely resembles the crystal state and solution orientation of cycloartenol which is now known to be flat rather than bent (Nes, W. D., Benson, M., Lundin, R. E., and Le, P. H. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5759-5763).  相似文献   

19.
Analysis of sterols of Saccharomyces cerevisiae mutants N3, N15, N26, and N3H, defective in sterol biosynthesis, was performed. Strains N3, N15, and N26 were isolated from their mother strain, M10, by screening with nystatin (Nagai et al. (1980) Mie Med. J. 30, 215-224), and strain N3H was isolated from N3 as a doubly-mutated strain. The main sterols of N3, N15, N26, and N3H were ergosta-7,22-dienol, ergost-8-enol, cholesta-5,7,24-trienol, and ergosta-7,22,24(28)-trienol, respectively. The former three strains were characterized as defective in delta 5-desaturation, delta 8--delta 7 isomerization, and C-24 transmethylation. Strain N3H was found to be defective in delta 5-desaturation as well as in delta 24(28)-reduction. However, the defect of N26 and N3H was suggested to be leaky, since small amounts of ergosterol and ergosta-7,22-dienol were found in these mutants, respectively. In N15, an accumulation (2% in total sterols) of the compound likely to be hydroxylated sterol was found. By aerobic adaptation of these strains, the accumulation of these strains, the accumulations of ergosta-7,22-dienol (22 mg/g dry cells), ergosta-7,22,24(28)-trienol (24 mg), ergosta-8,24(28)-dienol (18 mg), and cholesta-8,24-dienol (22 mg) reached a maximum in N3, N3H, N15, and N26 after 20, 20, 30, and 30 h, respectively. These strains appear to be useful for making 14C-labeled and non-labeled preparations of the above sterols.  相似文献   

20.
Tocopherols (vitamin E) function as inhibitors of lipid peroxidation in biomembranes by donating a hydrogen atom to the chain propagating lipid radicals, thus giving rise to chromanoxyl radicals of the antioxidant. We have shown that alpha-tocopherol homologs differing in the lengths of their hydrocarbon side chains (alpha-Cn) manifest strikingly different antioxidant potencies in membranes. The antioxidant activity of tocopherol homologs during (Fe2+ + ascorbate)- or (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomes increased in the order alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Chromanoxyl radicals generated from alpha-tocopherol and its more polar homologs by an enzymatic oxidation system (lipoxygenase + linolenic acid) can be recycled in rat liver microsomes by NAD-PH-dependent electron transport or by ascorbate. The efficiency of recycling increased in the same order: alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Thus the high efficiency of regeneration of short-chain homologs of vitamin E may account for their high antioxidant potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号