首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

2.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

3.
Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase.  相似文献   

4.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

5.
The Ca2+-pumping ATPase has been isolated from calf heart sarcolemma by calmodulin affinity chromatography (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-3270) as a polypeptide of Mr about 140,000. The purified enzyme has high affinity for Ca2+ in the presence of calmodulin (Km about 0.4 microM) but shifts to a low affinity state (Km about 20 microM) in its absence. Calmodulin increases also the Vmax of the enzyme. The effects of calmodulin are mimicked by phosphatidylserine and by a limited proteolytic treatment of the enzyme with trypsin. The purified ATPase can be reconstituted in asolectin liposomes, where it pumps Ca2+ with an approximate stoichiometry to ATP of 1. The purified (and reconstituted) enzyme is not phosphorylated by added ATP and cAMP-dependent protein kinase under conditions where the enzyme in situ is stimulated concomitant with the phosphorylation of the sarcolemmal membrane (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 9371-9373). Hence, the target of the regulatory phosphorylation system is not the ATPase molecule. The purified ATPase cross-reacts with an antibody raised against the erythrocyte Ca2+-pumping ATPase. Under the same conditions, the purified sarcoplasmic reticulum Ca2+-ATPase does not react. The proteolytic splitting pattern of the purified heart sarcolemma and erythrocyte enzymes are similar but not identical.  相似文献   

6.
Protein kinase C incorporates phosphate into two sites of myosin light chain kinase (MLC-kinase) in the absence of calmodulin. Phosphorylation is all but abolished in the presence of Ca2+ and calmodulin, suggesting that both sites of phosphorylation are close to the calmodulin binding site. The phosphorylation of MLC-kinase results in an approximately 10-fold increase in the dissociation constant of MLC-kinase for calmodulin. Following phosphorylation (2 mol/mol of enzyme) of MLC-kinase by protein kinase C, an additional 2 mol of phosphate can be incorporated into the MLC-kinase apoenzyme by the cAMP-dependent protein kinase. Different maps of phosphopeptides were obtained by tryptic hydrolysis from MLC-kinase preparations phosphorylated by each kinase. The phosphorylation sites for the cAMP-dependent kinase were located in a fragment of approximately 25,000 daltons. In contrast the phosphorylation sites for protein kinase C are found in a much smaller tryptic peptide. These results suggest that the phosphorylation sites on MLC-kinase are different for protein kinase C and for cAMP-dependent protein kinase. However, phosphorylation in both regions results in a reduced affinity for calmodulin.  相似文献   

7.
Purified Ca(2+)-stimulated, Mg(2+)-dependent ATPase (Ca(2+)-ATPase) from human erythrocytes was phosphorylated with a stoichiometry of about 1 mol of phosphate/mol of ATPase at both threonine and serine residues by purified rat brain type III protein kinase C. In the presence of calmodulin, the phosphorylation was markedly reduced. Labeled phosphate from [gamma-32P]ATP was retained on an 86-kDa calmodulin-binding tryptic fragment of Ca(2+)-ATPase but not on 82- and 77-kDa non-calmodulin-binding fragments. Similarly, fragmentation of the phosphorylated Ca(2+)-ATPase by calpain I revealed that calmodulin-binding fragments (127 and 125 kDa) retained phosphate label whereas a non-calmodulin-binding fragment (124 kDa) did not. The calmodulin-binding domain, located about 12 kDa from the carboxyl terminus of the Ca(2+)-ATPase, was thus located as a site of protein kinase C phosphorylation. A synthetic peptide corresponding to a segment of the calmodulin-binding domain (H2 N-R-G-L-N-R-I-Q-T-Q-I-K-V-V-N-COOH) was indeed phosphorylated at the single threonine residue within this sequence. The additional serine phosphorylation site was carboxyl terminal to the calmodulin domain. Phosphorylation by purified type III protein kinase C (canine heart) antagonized the calmodulin activation of the Ca(2+)-ATPase, particularly at lower Ca2+ concentrations (0.2-1.0 microM). By contrast, a purified but unresolved protein kinase C isoenzyme mixture from rat brain stimulated the activity of Ca(2+)-ATPase prepared in asolectin, but not glycerol, by more than 2-fold in the presence of the ionophore A23187, without increasing its Ca2+ sensitivity. The results clearly indicate that human erythrocyte Ca(2+)-ATPase is a substrate of protein kinase C, but the effect of phosphorylation on the activity of the enzyme depends on the isoenzyme form of protein kinase C used and on the lipid associated with the Ca(2+)-ATPase.  相似文献   

8.
Smooth muscle myosin light chain kinase (MLC-kinase) was rapidly phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) to a molar stoichiometry of 2.77 +/- 0.15 associated with a threefold increase in the concentration of calmodulin (CaM) required for half-maximal activation of MLC-kinase. Binding of CaM to MLC-kinase markedly reduced the phosphorylation stoichiometry to 0.21 +/- 0.05 and almost completely inhibited phosphorylation of sites in two peptides (32P-peptides P1 and P2) with reduced phosphorylation of peptide P3. By analogy, cAMP-dependent protein kinase phosphorylated MLC-kinase to a stoichiometry of 3.0 or greater in the absence of CaM with about a threefold decrease in the apparent affinity of MLC-kinase for CaM. Binding of CaM to MLC-kinase inhibited the phosphorylation to 0.84 +/- 0.13. Complete tryptic digests contained two major 32P-peptides as reported previously. One of the peptides, whose phosphorylation was inhibited in the presence of excess calmodulin, appeared to be the same as P2. Automated Edman sequence analysis suggested that both CaM-kinase II and cAMP-dependent protein kinase phosphorylated this peptide at the second of the two adjacent serine residues located at the C-terminal boundary of the CaM-binding domain. However, the other peptide phosphorylated by cAMP-dependent protein kinase, regardless of whether CaM was bound, was different from P1 and P3. Thus, MLC-kinase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of CaM-kinase II and is blocked by Ca2+/CaM-binding.  相似文献   

9.
J T Gasser  M P Chiesi  E Carafoli 《Biochemistry》1986,25(23):7615-7623
Phospholamban (PLB) from cardiac sarcoplasmic reticulum (SR) was phosphorylated under various conditions by the adenosine cyclic 3',5'-phosphate (cAMP)-dependent and/or the calmodulin-dependent protein kinase. The small shifts in apparent molecular weight resulting from the incorporation of Pi groups in the PLB complexes were analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel experiments, PLB was dissociated into its subunits and analyzed by using a newly developed isoelectric focusing system. The pI values of the PLB subunits phosphorylated by the cAMP- or calmodulin-dependent kinase were 6.2 and 6.4, respectively. Double phosphorylation of the same subunit resulted in an acidic shift of the pI to 5.2. The combined analysis of the behavior of the PLB complex and of its subunits has greatly simplified the interpretation of the complex phosphorylation pattern and has led to the following conclusions: The PLB complex is composed of five probably identical subunits, each of them containing a distinct phosphorylation site for the calmodulin- and the cAMP-dependent kinase. The population of PLB interacting with the endogenous calmodulin-dependent kinase cannot be phosphorylated by the cAMP-dependent kinase unless previously phosphorylated in the presence of calmodulin. It was also observed that after maximal phosphorylation of PLB in the presence of very large amounts of the cAMP-dependent protein kinase, the Ca2+ pumping rate of the cardiac SR ATPase is stimulated up to 5-fold, i.e., a level of a stimulation which exceeds considerably the values so far reported in the literature.  相似文献   

10.
The 18,000-dalton bovine lens fiber cell intrinsic membrane protein MP18 was phosphorylated on a serine residue by both cAMP-dependent protein kinase and protein kinase C. In addition, this protein bound calmodulin and was recognized by a monoclonal antibody (2D10). These different regions were localized using enzymatic and chemical fragmentation of electrophoretically purified MP18 that had been phosphorylated with either cAMP-dependent protein kinase or protein kinase C. Partial digestion of 32P-labeled MP18 with protease V8 resulted in a Mr = 17,000 peptide that bound calmodulin, but neither contained 32P or was recognized by the monoclonal antibody 2D10. Furthermore, the 17-kDa peptide had the same N-terminal amino acid sequence as MP18. Thus, the monoclonal antibody 2D10 recognition site and the protein kinase phosphorylation site(s) are close together and confined to a small region in the C terminus of MP18. This conclusion was confirmed in experiments where MP18 was fragmented with trypsin, endoproteinase Lys-C, or CNBr. The location of the phosphorylation site was confirmed by sequencing the small 32P-labeled, C-terminal peptide that resulted from protease V8 digestion of 32P-labeled MP18. This peptide contained a consensus sequence for cAMP-dependent protein kinase.  相似文献   

11.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

12.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

13.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

14.
Phosphorylation of cytochrome P450: regulation by cytochrome b5   总被引:1,自引:0,他引:1  
Rabbit liver cytochrome P450 LM2 and several forms of rat liver cytochrome P450 are phosphorylated by cAMP-dependent protein kinase (PKA) and by protein kinase C. Under aqueous assay conditions at neutral pH LM2 is phosphorylated only to a maximum extent of about 20 mol% by PKA. We show that detergents or alkaline pH greatly enhance the extent of phosphorylation of the cytochrome P450 substrates of cAMP-dependent protein kinase. In the presence of 0.05% Emulgen, PBRLM5, which appears to be the best cytochrome P450 substrate for cAMP-dependent protein kinase, incorporates phosphate up to about 84 mol% of enzyme. We reported previously (I. Jansson et al. (1987) Arch. Biochem. Biophys. 259, 441-448) that cytochrome b5 inhibits the phosphorylation of LM2 by cAMP-dependent protein kinase. In this paper, using PBRLM5, we demonstrate, by analysis of initial rates, that the inhibition of phosphorylation by cytochrome b5 is competitive, with a Ki = 0.48 microM. We also show that a number of forms of cytochrome P450 can be phosphorylated by protein kinase C, and that the phosphorylation of these forms by protein kinase C is also inhibited by cytochrome b5. These data suggest that the phosphorylation site(s) of cytochromes P450 may be located within or overlap the cytochrome b5 binding domain of the enzymes.  相似文献   

15.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

16.
Phosphorylation of paramyosin   总被引:1,自引:0,他引:1  
1. Myofibrils isolated from Mercenaria mercenaria were phosphorylated by endogenous kinase. Over a range of ionic strengths only paramyosin was phosphorylated. 2. Thiophosphorylation of paramyosin caused an inhibition of steady-state actin-activated ATPase activity of the myofibrils. 3. It is proposed that the endogenous kinase is the catalytic subunit of the cAMP-dependent protein kinase. 4. The sequence around the phosphorylation site was determined. 5. The phosphorylation site probably is close to the C-terminus of the paramyosin molecule.  相似文献   

17.
Purified acetylcholine receptor is rapidly and specifically phosphorylated by partially purified protein kinase C, the Ca2+/phospholipid-dependent enzyme. The receptor delta subunit is the major target for phosphorylation and is phosphorylated on serine residues to a final stoichiometry of 0.4 mol of phosphate/mol of subunit. Phosphorylation is dose-dependent with a Km value of 0.2 microM. Proteolytic digestion of the delta subunit phosphorylated by either protein kinase C or the cAMP-dependent protein kinase yielded a similar pattern of phosphorylated fragments. The amino acids phosphorylated by either kinase co-localized within a 15-kDa proteolytic fragment of the delta subunit. This fragment was visualized by immunoblotting with antibodies against a synthetic peptide corresponding to residues 354-367 of the receptor delta subunit. This sequence, which contains 3 consecutive serine residues, was recently shown to include the cAMP-dependent protein kinase phosphorylation site (Souroujon, M. C., Neumann, D., Pizzighella, S., Fridkin, M., and Fuchs, S. (1986) EMBO J. 5, 543-546). Concomitantly, the synthetic peptide 354-367 was specifically phosphorylated in a Ca2+- and phospholipid-dependent manner by protein kinase C. Furthermore, antibodies directed against this peptide inhibited phosphorylation of the intact receptor by protein kinase C. We thus conclude that both the cAMP-dependent protein kinase and protein kinase C phosphorylation sites reside in very close proximity within the 3 adjacent serine residues at positions 360, 361, and 362 of the delta subunit of the acetylcholine receptor.  相似文献   

18.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

19.
Phosphorylation of the Ca2(+)-pump ATPase of cardiac sarcolemmal vesicles by exogenously added protein kinases was examined to elucidate the molecular basis for its regulation. The Ca2(+)-pump ATPase was isolated from protein kinase-treated sarcolemmal vesicles using a monoclonal antibody raised against the erythrocyte Ca2(+)-ATPase. Protein kinase C (C-kinase) was found to phosphorylate the Ca2(+)-ATPase. The stoichiometry of this phosphorylation was about 1 mol per mol of the ATPase molecule. The C-kinase activation resulted in up to twofold acceleration of Ca2+ uptake by sarcolemmal vesicles due to its effect on the affinity of the Ca2+ pump for Ca2+ in both the presence and absence of calmodulin. Both the phosphorylation and stimulation of ATPase activity by C kinase were also observed with a highly-purified Ca2(+)-ATPase preparation isolated from cardiac sarcolemma with calmodulin-Sepharose and a high salt-washing procedure. Thus, C-kinase appears to stimulate the activity of the sarcolemmal Ca2(+)-pump through its direct phosphorylation. In contrast to these results, neither cAMP-dependent protein kinase, cGMP-dependent protein kinase nor Ca2+/calmodulin-dependent protein kinase II phosphorylated the Ca2(+)-ATPase in the sarcolemmal membrane or the purified enzyme preparation, and also they exerted virtually no effect on Ca2+ uptake by sarcolemmal vesicles.  相似文献   

20.
Rabbit brain actomyosin showed several fold stimulation of the MgATPase activity by Ca2+ alone and by Ca2+/calmodulin. The calmodulin-binding drug, fluphenazine, abolished the stimulated activity. In the presence of Ca2+, exogenous calmodulin had a biphasic effect on ATPase activity at low concentrations (less than 0.15 microM) and activated the ATPase activity by 60-70% at about 1 microM. Tropomyosin-troponin complex from skeletal muscle did not stimulate the ATPase activity of brain actomyosin, but conferred Ca2+ sensitivity to a skeletal muscle myosin/brain actomyosin mixture. These results indicate the presence of myosin-linked, calmodulin-dependent, Ca2+-regulatory system for brain actomyosin. Heavy and light chains of brain myosin were found to be rapidly phosphorylated by endogenous Ca2+-dependent protein kinase(s). Ca2+-independent phosphorylation of one of the light chains was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号