首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Cytotoxic effects and topoisomerase II-mediated DNA breaks induced in vitro by ellipticine derivatives were examined in connection with 1H NMR and circular dichroism (CD) studies on molecular structures and interactions of drugs with DNA. The compounds included four 9-hydroxyellipticine and two 7-hydroxyisoellipticine derivatives. Structure-activity relationships indicated that a change in nitrogen atom position in the pyridinic ring greatly affected drug effects both on topoisomerase II action and cytotoxicity to L1210 cells. The four 9-hydroxyellipticine derivatives yielded bell-shaped curves in in vitro topoisomerase II-mediated DNA break assays, whereas the two 7-hydroxyisoellipticine derivatives demonstrated an almost linear increase at the same concentration (0-10 microM). In both cases, the intensity of cleavage was modulated by the position and the degree of methylation on the pyridinic ring, and results were correlated with cytotoxic activity expressed as the in vitro ID50 values for L1210 leukemia cells. 1H NMR experiments performed on free drug molecules in solution revealed that the two protons (alpha and beta) contiguous to the biologically important hydroxy group were sensitive to changes in electron distribution produced by the distant chemical modifications and methylations of the pyridinic ring. A linear relationship was observed between the differences in chemical shifts of alpha and beta protons (delta delta alpha-beta) versus ID50 values. CD experiments indicated that, at weak ionic strength I = 0.02 and at pH 7, drugs interact with the poly[d(A-T)] duplex according to a "three-mode binding model" which is governed by the drug structure and the drug to DNA ratio. The intercalation mode was related to the induction of topoisomerase II-mediated DNA cleavage, while the external binding mode consecutive to intercalation was related to cleavage suppression. These two modes concerned the good intercalators 9-hydroxyellipticines. The third was found for the weak intercalators 7-hydroxyisoellipticines and was characterized by self-stacked molecules bound "outside" DNA, presumably in the minor groove. Ligands either could be intercalated partially or linked at the edge of bases with a small number of molecules filling intercalation sites, for the second alternative. In addition to having different binding modes, 9-hydroxyellipticines were better inducers of DNA distortions than 7-hydroxyisoellipticines. The incidence of the drug binding modes on DNA-topoisomerase II recognition was discussed in connection with the in vitro cytotoxic activity exhibited by the drugs.  相似文献   

2.
This paper reports the synthesis and the biological properties of two novel pyrene-bearing isoxazolidinyl derivatives able to exhibit antitumor activity by DNA intercalation. The synthetic approach exploits a consolidated protocol based on 1,3-dipolar cycloaddition reaction. The intercalating properties have been determined by combining electrophoresis studies with molecular docking, while the antitumor activity has been evaluated over five carcinoma cell lines. The obtained compounds show also a good affinity towards silver cations; the presence of a 2-hydroxybenzyl appendage on the isoxazolidine ring ensures a good affinity and selectivity in the binding.  相似文献   

3.
Changes in DNA binding ability of daunomycin following structural modifications in the aglycone moiety have been studied by the fluorescence quenching method and by thermal denaturation of the complex. Removal of the methoxyl group at position 4 leads to a slightly stronger binding. Changes in the position of the glycosidic linkage result in a markedly weaker binding. Removal of the hydroxyl group at position 9, with the concomitant formation of a 9,10-anhydro derivative, decreases the binding ability. Methylation of hydroxyl groups at C-6 and C-11 leads to an inactive derivative and makes the binding affinity disappear almost completely. Structure-activity correlations for the DNA binding reaction deduced from these studies are in agreement with earlier findings that relate to the biological activity and confirm the general picture of the binding mechanism.  相似文献   

4.
The results of a study of the effects of hydroxyl groups at positions, 2, 4 and 6 of the amino sugar on the activity of daunorubicin, adriamycin, and stereoisomers are presented. While the 4′-deoxy derivatives showed a slightly increased biological activity as compared with the parent compounds, the derivatives containing an additional hydroxyl group were less active. It is suggested that the changes in the polarity and in the DNA binding ability of these derivatives are the main factors accounting for the difference in the in vivo activity. The possible relations among the pKa values, the DNA binding properties, and the cellular uptake of the compounds are discussed with particular reference to their therapeutic effectiveness.  相似文献   

5.
We employed the techniques of DNA relaxation, DPPH (1,1-diphenyl-2-picrylhydrazyl hydrate), and DMPO (5,5-dimethyl-1-pyrroline-N-oxide)-electron spin resonance (ESR), to study the effects of reactive oxygen species (ROS) suppression by 11 selected C6-C3 phenylpropanoid derivatives under oxidative conditions. We also investigated the effects of the derivatives on the inhibition of xanthine oxidase (XO) activity, and the structure-activity relationships (SARs) of these derivatives against XO activity were further examined using computer-aided molecular modeling. Caffeic acid was the most potent radical scavenger among the 11 test compounds. Our results suggest that the chemical structure and number of hydroxyl groups on the benzene ring of phenylpropanoids are correlated with the effects of ROS suppression. All test derivatives were competitive inhibitors of XO. The results of the structure-based molecular modeling exhibited interactions between phenylpropanoid derivatives and the molybdopterin region of XO. The para-hydroxyl of phenylpropanoid derivatives was pointed toward the guanidinium group of Arg 880. The phenylpropanoid derivatives containing the meta-or ortho-hydroxyl formed hydrogen bonds with Thr 1010. In addition, meta-hydroxyl formed hydrogen bonds with the peptide bond between the residues of Thr1010 and Phe1009. CAPE, the phenylenethyl ester of phenylpropanoids, had the highest affinity toward the binding site of XO, and we speculated that this was due to hydrophobic interactions of the phenylethyl ester with several hydrophobic residues surrounding the active site. The hypoxanthine/XO reaction in the DMPO-ESR technique was used to correlate the effects of these phenylpropanoid derivatives on enzyme inhibition and ROS suppression, and the results showed that caffeic acid and CAPE were the two most potent agents among the tested compounds. We further assessed the effects of the test compounds on living cells, and CAPE was the most potent agent for protecting cells against ROS-mediated damage among the tested phenylpropanoids.  相似文献   

6.
Abstract

A series of new 2-alkynyl, 2-cycloalkynyl, and 2-aralkynyl derivatives of adenosine-5′-ethyluronamide (NECA) were synthesized and evaluated in binding studies and functional assays to assess their potency and selectivity at A2 vs A1 receptors. The new derivatives were also tested as inhibitors of rabbit platelet aggregation induced by ADP. While the presence of an aromatic or heteroaromatic ring conjugated to the triple bond decreased antiplatelet activity, the introduction of a hydroxyl group or a heterocyclic ring on the alkynyl side chain increased the antiaggregatory activity in comparison with NECA, resulting in the most potent inhibitors of platelet aggregation so far known in the nucleoside series. However, the presence of an α-quaternary carbon markedly reduced the antiaggregatory potency without affecting the A2 binding affinity, suggesting that the platelet receptor is not a typical A2a site.  相似文献   

7.
Mutagenic activity and DNA intercalation were examined for 9-aminoacridine (9-AA) and its derivatives. Introduction of a nitro group into the 9-AA molecule was found to enhance the activity enormously as was detected by the Ames test. Acetylation of amino group at 9-position of acridine ring inhibited the intercalation, the frameshift activity disappearing. Rat liver S9 converted 9-AA metabolically to 9-amino-2-hydroxyacridine.  相似文献   

8.
Naltrexone (1), which is a member of the group of competitive opioid antagonists, shows a strong affinity for mu-receptors and its derivatives have been notable as novel receptor antagonists. In this paper, the preparation of several naltrexone derivatives is described; these were used to investigate the role of the oxygenated functional groups in facilitating binding to a series of the opioid receptors. The derivatives showed affinity for opioid mu-receptors which was similar to that of naltrexone, but these compounds, which had masked hydroxyl functional groups, displayed a moderate activity. These results suggest that every oxygenated functional group in naltrexone (1) plays an important role in binding to the opioid receptor.  相似文献   

9.
Topoisomerase II is a cellular target for a number of clinically relevant antitumor drugs. To elucidate the possible cellular target for the antiproliferation activity of cobalt salicylaldoxime (CoSAL), which inhibits 50% of leukemic cell proliferation at a concentration of 60 microM, DNA binding studies and studies of the action of this complex on topoisomerase II catalytic activities were carried out. The results from DNA binding studies show that CoSAL binds DNA strongly with a stoichiometric ratio of two drug molecules for five nucleotide bases and shows a mode of interaction similar to that of DNA groove binding agents. The results from topoisomerase II inhibition studies show that the complex inhibits the relaxation activity of topoisomerase II in a dose-dependent manner and poisons its activity through cleavage complex formation. To see if the hydroxyl group present on imine nitrogen is involved in topoisomerase II poisoning, we synthesized an analogue of CoSAL in which the hydroxyl group was replaced with semicarbazone. This complex too binds DNA with an affinity similar to that of CoSAL, but with a small difference in the mode of interaction; however, it marginally inhibits leukemic cell proliferation and does not inhibit topoisomerase II activity, which suggests the involvement of a hydroxyl group. An immunoprecipitation assay was conducted which showed that the cleavage complex formed in the presence of CoSAL contained 75% of the complex, while the other complex shows only 7. 65%. Cyclic voltametric spectra of the complexes in the presence of DNA show that they do not oxidize DNA. These results suggest that CoSAL shows a bidirectional mode of interaction with enzyme and DNA and inhibits topoisomerase II activity by forming a drug-mediated cleavage complex. Our data strongly suggest that topoisomerase II may be one of the cellular targets for antiproliferation activity of CoSAL.  相似文献   

10.
Abstract

Dihydropyridazinone(DHP) derivatives such as indolidan are positive inotropic agents that show inhibition of cyclic AMP phosphodiesterase(PDE) activity. Indolidan inhibition is selective for PDE3 among the seven PDE gene families. DHP derivatives and related analogs have been used to define critical regions of the active site of PDE3 isoforms and radiolabeled analogs have been used to define indolidan sarcoplasmic reticulum (SR) receptor sites. We report here studies comparing the structure-activity relationships (SAR) for PDE3 inhibition with indolidan binding to two types of sites: canine SR and a monoclonal antibody derived against indolidan conjugated to a hemocyanin. SR and monoclonal antibody binding both fit single-site, high affinity models (IC50 = 1.2 and 62 nM) that were near 52 and 360 times that of SR PDE3. Indolidan and thirteen analogs showed similar competition with either SR 3H-LY186126 binding or SR PDE3 inhibition. Antibody binding maintained selectivity but showed a different rank order potency for SR binding. Indole ring C3 methylation increased and DHP ring C4′ methylation decreased indolidan monoclonal antibody binding while both substitutions increased SR binding. These studies support the hypothesis that SR PDE3 is a cardiotonic receptor site in myocardial membranes and indicate that models of the structural features of binding sites derived from inhibitor data alone could produce models with limited topography relative to the natural ligand.  相似文献   

11.
Triazoloacridinones (TA) are a new group of potent antitumor compounds, from which the most active derivative, C-1305, has been selected for extended preclinical trials. This study investigated the mechanism of TA binding to DNA. Initially, for selected six TA derivatives differing in chemical structures as well as cytotoxicity and antitumor activity, the capability of noncovalent DNA binding was analyzed. We showed that all triazoloacridinones studied stabilized the DNA duplex at a low-concentration buffer but not at a salt concentration corresponding to that in cells. DNA viscometric studies suggested that intercalation to DNA did not play a major role in the mechanism of the cytotoxic action of TA. Studies involving cultured cells revealed that triazoloacridinone C-1305 after previous metabolic activation induced the formation of interstrand crosslinks in DNA of some tumor and fibroblast cells in a dose dependent manner. However, the detection of crosslink formation was possible only when the activity of topoisomerase II in cells was lowered. Furthermore, it was impossible to validate the relevance of the ability to crosslink DNA to biological activity of TA derivatives.  相似文献   

12.
In order to develop high affinity, fluorescent ligands for the estrogen receptor based on 2-arylindenes, it is important to understand how this non-steroidal estrogen is oriented within the binding site and to know how hydroxyl substituents affect binding. To investigate these issues a series of dihydroxyl-substituted 2,3-diphenylindenes were prepared by the cyclization of appropriately substituted alpha-benzyldesoxybenzoins, and their binding affinities for the estrogen receptor measured by a competitive radiometric binding assay. Introduction of a p-hydroxyl group in the 2-phenyl ring of two 2,3-diphenyl-6-hydroxyindene systems causes a 3-fold increase in binding affinity, whereas, p-hydroxylation in the 3-phenyl ring of these systems causes a 2-fold reduction in binding affinity. The parallel change in binding affinity in these two systems suggests a consistent binding orientation of the 2,3-diarylindene systems, which, on the basis of earlier studies, has the indene system corresponding to the A/B-ring system of estradiol. This orientation model and the enhanced affinity of the p-hydroxy 2-ring derivatives are suggestive of a new hydrogen bonding site below the D-ring binding site. Changes in receptor binding affinity upon hydroxylation in triphenylacrylonitrile ligands for the estrogen receptor, reported by others, do not show such parallelism, suggesting that different derivatives may not be bound in congruent orientations. A m-hydroxyl substituent in ring-3 of the 2,3-diarylindene has very little effect on receptor binding. In designing fluorescent 2,3-diarylindene ligands for the estrogen receptor, 3-ring hydroxylation may be useful in reducing non-specific binding and in modifying electron donation to the fluorophore with only modest or no reduction in binding affinity. p-Hydroxylation of the 2-ring, although increasing receptor binding, is not consistent with the electron accepting nature required of this ring.  相似文献   

13.
2-Aminoresorcinol is a potent and selective intestinal glucosidase inhibitor. Unlike the majority of glucosidase inhibitors, it shows an uncompetitive mode of inhibition. In this study, we tested the intestinal glucosidase inhibitory activity of various 2-aminoresorcinol derivatives. We found that structural changes, in amino and two phenolic hydroxyl groups had a negative impact on inhibitory activity, but methylation of the phenolic hydroxyl group was found to maintain its activity and replacement of the aromatic ring with an acyl or alkoxy carbonyl group at the 4th position also retained its activity. This enable us to design a molecular probe for further study of the inhibition mechanism of 2-aminoresorcinol.  相似文献   

14.
DNA binding properties of 9-substituted harmine derivatives   总被引:3,自引:0,他引:3  
The beta-carboline alkaloids have been characterized as a group of potential antitumor agents. The underlying mechanisms of harmine and its derivatives were investigated by DNA binding assay and Topoisomerase (Topo) inhibition assay. Meanwhile, the DNA photocleavage potential of these compounds and their cytotoxicity were also examined by DNA photocleavage assay and cytotoxicity assay in vitro. Harmine and its derivatives exhibited remarkable DNA intercalation capacity and significant Topo I inhibition activity but no effect with Topo II. Introducing an appropriate substituent into position-9 of beta-carboline nucleus enhanced the affinity of the drug to DNA resulting in remarkable Topo I inhibition effects. These results suggested that the ability of these compounds to act as intercalating agents and Topo I inhibitors was related to the antitumor activity. Moreover, these data showing a correlation between cytotoxicity and Topo I inhibition or DNA binding capacity are very important as they strongly suggested that the Topo I-mediated DNA cleavage assay and DNA binding assay could be used as a guide to design and develop superior analogues for antitumor activities.  相似文献   

15.
2-Aminoresorcinol is a potent and selective intestinal glucosidase inhibitor. Unlike the majority of glucosidase inhibitors, it shows an uncompetitive mode of inhibition. In this study, we tested the intestinal glucosidase inhibitory activity of various 2-aminoresorcinol derivatives. We found that structural changes, in amino and two phenolic hydroxyl groups had a negative impact on inhibitory activity, but methylation of the phenolic hydroxyl group was found to maintain its activity and replacement of the aromatic ring with an acyl or alkoxy carbonyl group at the 4th position also retained its activity. This enable us to design a molecular probe for further study of the inhibition mechanism of 2-aminoresorcinol.  相似文献   

16.
A series of acenaphtho[1,2-b]pyrrole derivatives were synthesized and their intercalation geometries with DNA and antitumor activities were investigated in detail. From combination of SYBR Green-DNA melt curve, fluorescence titration, absorption titration, and circular dichroism (CD) studies, it was identified that to different extent, all the compounds behaved as DNA intercalators and transformed B form DNA to A-like conformation. The different intercalation modes for the compounds were revealed. The compounds containing a methylpiperazine substitution (series I) intercalated in a fashion that the long axis of the molecule paralleled to the base-pair long axis, while the alkylamine- substituted compounds (series II and III) located vertically to the long axis of DNA base pairs. Consequently, the DNA binding affinity of these compounds was obtained with the order of II>III>I, which attributed to the role of the substitution in binding geometry. Further, cell-based studies showed all the compounds exhibited outstanding antitumor activities against two human tumor cell lines with IC(50) ranging from 10(-7) to 10(-6)M. Interestingly, compound (1)a (a compound in series I), whose binding affinity was one of the lowest but altered DNA conformation most significantly, showed much lower IC(50) value than other compounds. Moreover, it could induce tumor cells apoptosis, while the compounds (2)a and (3)a (in series II and III, respectively) could only necrotize tumor cells. Their different mechanism of killing tumor cells might lie in their different DNA binding geometry. It could be concluded that the geometry of intercalator-DNA complex contributed much more to the antitumor property than binding affinity.  相似文献   

17.
The DNA interaction of derivatives of ellipticine with heterocyclic ring systems with three, four, or five rings and a dimethylaminoethyl side chain was studied. Optical spectroscopy of drug complexes with calf thymus DNA, poly [(dA-dT) · (dA-dT)], or poly [(dG-dC) · (dG-dC)] showed a 10 nm bathochromic shift of the light absorption bands of the pentacyclic and tetracyclic compounds upon binding to the nucleic acids, which indicates binding by intercalation. For the tricyclic compound a smaller shift of 1–3 nm was observed upon binding to the nucleic acids. Flow linear dichroism studies show that the geometry of all complexes is consistent with intercalation of the ring system, except for the DNA and poly [(dG-dC) · (dG-dC)] complexes of the tricyclic compound, where the average angle between the drug molecular plane and the DNA helix axis was found to be 65°. One-dimensional 1H-nmr spectroscopy was used to study complexes between d(CGCGATCGCG)2 and the tricyclic and pentacyclic compounds. The results on the pentacyclic compound show nonselective broadening due to intermediate chemical exchange of most oligonucleotide resonances upon drug binding. The imino proton resonances are in slow chemical exchange, and new resonances with upfield shifts approaching 1 ppm appear upon drug binding, which supports intercalative binding of the pentacyclic compound. The results on the tricyclic compound show more rapid binding kinetics and very selective broadening of resonances. The data suggest that the tricyclic compound is in an equilibrium between intercalation and minor groove binding, with a preference to bind close to the AT base pairs with the side chain residing in the minor groove. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Phenyl-substituted indoloquinolines were studied for their biological activity and their DNA binding affinity. Water-soluble aminoalkyl derivatives were prepared and have shown significant in vitro anticancer activity. Unlike previous reports on the potential role of duplex DNA as target for various indoloquinoline based drugs, duplex UV melting experiments and fluorescence titrations suggest only weak and moderately strong binding of the phenyl-substituted indoloquinolines at 120 mM and 20 mM Na+ concentrations, respectively. Binding is suggested by ethidium displacement and circular dichroism experiments to be associated with drug intercalation between base pairs.  相似文献   

19.
A series of novel, potent, and selective muscarinic receptor 1 agonists (M1 receptor agonists) that employ a key N-substituted morpholine Arecoline moiety has been synthesized as part of research effort for the therapy of Alzheimer’s diseases. The ester group of arecoline (which is reported as muscarinic agonist) has been replaced by N-substituted morpholine ring. The structure–activity relationship reveals that the electron donating 4-substituted sulfonyl derivatives (9a, 9b, 9c, and 9e) on the nitrogen atom of the morpholine ring increases the affinity of M1 receptor binding 50- to 80-fold greater than the corresponding arecoline. Other derivatives also showed considerable M1 receptor binding affinity.  相似文献   

20.
Abstract

We have previously synthesized a 2,5-diphenylfuranamidine dication (4) and presented evidence that this compound binds to AT sequences in DNA by a minor-groove interaction mode but binds to GC sequences by intercalation (1,2). To probe these sequence-dependent binding modes in more detail, and particularly to obtain additional evidence for the binding mode in GC rich sequences, we have synthesized and studied the DNA complexes of 1–3 which have the furan ring of 4 replaced by 2,6-substituted pyridine (1), pyrimidine (2), or triazine (3) ring systems. The three compounds with a six-membered central ring system bind to AT DNA sequences more weakly than the furan compound, but retain the minor-groove binding mode. The pyridine and pyrimidine derivatives bind to GC sequences of DNA more strongly than the furan, but the triazine derivative binds more weakly. The aromatic proton signals of 1–3, as previously observed with 4 shift upfield by approximately 0.5 ppm or greater on complex formation with polyd(G-C)2. This and other spectroscopic as well as viscosity and kinetics results indicate that 1–4 bind to GC sites in DNA by intercalation. A nonclassical intercalation model, with the twisted-unfused, aromatic ring system intercalated into an intercalation site of matching structure can explain all of our and the literature results for the GC binding mode of these unfused, aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号