首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This simulation study was designed to study the power and type I error rate in QTL mapping using cofactor analysis in half-sib designs. A number of scenarios were simulated with different power to identify QTL by varying family size, heritability, QTL effect and map density, and three threshold levels for cofactor were considered. Generally cofactor analysis did not increase the power of QTL mapping in a half-sib design, but increased the type I error rate. The exception was with small family size where the number of correctly identified QTL increased by 13% when heritability was high and 21% when heritability was low. However, in the same scenarios the number of false positives increased by 49% and 45% respectively. With a liberal threshold level of 10% for cofactor combined with a low heritability, the number of correctly identified QTL increased by 14% but there was a 41% increase in the number of false positives. Also, the power of QTL mapping did not increase with cofactor analysis in scenarios with unequal QTL effect, sparse marker density and large QTL effect (25% of the genetic variance), but the type I error rate tended to increase. A priori, cofactor analysis was expected to have higher power than individual chromosome analysis especially in experiments with lower power to detect QTL. Our study shows that cofactor analysis increased the number of false positives in all scenarios with low heritability and the increase was up to 50% in low power experiments and with lower thresholds for cofactors.  相似文献   

2.
In this paper we consider the detection of individual loci controlling quantitative traits of interest (quantitative trait loci or QTLs) in the large half-sib family structure found in some species. Two simple approaches using multiple markers are proposed, one using least squares and the other maximum likelihood. These methods are intended to provide a relatively fast screening of the entire genome to pinpoint regions of interest for further investigation. They are compared with a more traditional single-marker least-squares approach. The use of multiple markers is shown to increase power and has the advantage of providing an estimate for the location of the QTL. The maximum-likelihood and the least-squares approaches using multiple markers give similar power and estimates for the QTL location, although the likelihood approach also provides estimates of the QTL effect and sire heterozygote frequency. A number of assumptions have been made in order to make the likelihood calculations feasible, however, and computationally it is still more demanding than the least-squares approach. The least-squares approach using multiple markers provides a fast method that can easily be extended to include additional effects.  相似文献   

3.
S Xu 《Genetics》1998,148(1):517
To avoid a loss in statistical power as a result of homozygous individuals being selected as parents of a mapping population, one can use multiple families of line crosses for quantitative trait genetic linkage analysis. Two strategies of combining data are investigated: the fixed-model and the random-model strategies. The fixed-model approach estimates and tests the average effect of gene substitution for each parent, while the random-model approach treats each effect of gene substitution as a random variable and directly estimates and tests the variance of gene substitution. Extensive Monte Carlo simulations verify that the two strategies perform equally well, although the random model is preferable in combining data from a large number of families. Simulations also show that there may be an optimal sampling strategy (number of families vs. number of individuals per family) in which QTL mapping reaches its maximum power and minimum estimation error. Deviation from the optimal strategy reduces the efficiency of the method.  相似文献   

4.
We developed a rapid, economical method for high-resolution quantitative trait locus (QTL) mapping using microarrays for selective genotyping of pooled DNA samples. We generated 21,207 F2 flies from two inbred Drosophila melanogaster strains with known QTLs affecting lifespan, and hybridized DNA pools of young and old flies to microarrays. We used changes of gene frequency of 2,326 single-feature polymorphisms (SFPs) to map previously identified and additional QTLs affecting lifespan.  相似文献   

5.
Precise mapping of quantitative trait loci(QTLs)is critical for assessing genetic effects and identifying candidate genes for quantitative traits.Interval and composite interval mappings have been the methods of choice for several decades,which have provided tools for identifying genomic regions harboring causal genes for quantitative traits.Historically,the concept was developed on the basis of sparse marker maps where genotypes of loci within intervals could not be observed.Currently,genomes of many organisms have been saturated with markers due to the new sequencing technologies.Genotyping by sequencing usually generates hundreds of thousands of single nucleotide polymorphisms(SNPs),which often include the causal polymorphisms.The concept of interval no longer exists,prompting the necessity of a norm change in QTL mapping technology to make use of the high-volume genomic data.Here we developed a statistical method and a software package to map QTLs by binning markers into haplotype blocks,called bins.The new method detects associations of bins with quantitative traits.It borrows the mixed model methodology with a polygenic control from genome-wide association studies(GWAS)and can handle all kinds of experimental populations under the linear mixed model(LMM)framework.We tested the method using both simulated data and data from populations of rice.The results showed that this method has higher power than the current methods.An R package named binQTL is available from GitHub.  相似文献   

6.
Marker-based mapping of quantitative trait loci using replicated progenies   总被引:10,自引:0,他引:10  
Summary When heritability of the trait under investigation is low, replicated progenies can bring about a major reduction in the number of individuals that need to be scored for marker genotype in determining linkage between marker loci and quantitative trait loci (QTL). Savings are greatest when heritability of the trait is low, but are much reduced when heritability of the quantitative trait is moderate to high. Required numbers for recombinant inbred lines will be greater than those required for a simple F2 population when heritabilities are moderate to high and the proportion of recombination between marker locus and quantitative trait locus is substantial.Contribution No. 2613-E of the Agricultural Research Organization, 1989 series  相似文献   

7.
Modeling epistasis of quantitative trait loci using Cockerham's model   总被引:10,自引:0,他引:10  
Kao CH  Zeng ZB 《Genetics》2002,160(3):1243-1261
We use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called Cockerham's model, for studying epistasis between genes. The properties of Cockerham's model in modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and discussed. Because of its orthogonal property, Cockerham's model has several advantages in partitioning genetic variance into components, interpreting and estimating gene effects, and application to quantitative trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also addressed. Real and simulated examples are used to illustrate Cockerham's model, compare different models, and map for epistatic QTL. Finally, we extend Cockerham's model to multiple loci and discuss its applications to QTL mapping.  相似文献   

8.
Mapping quantitative trait loci using molecular marker linkage maps   总被引:6,自引:0,他引:6  
Summary High-density restriction fragment length polymorphism (RFLP) and allozyme linkage maps have been developed in several plant species. These maps make it technically feasible to map quantitative trait loci (QTL) using methods based on flanking marker genetic models. In this paper, we describe flanking marker models for doubled haploid (DH), recombinant inbred (RI), backcross (BC), F1 testcross (F1TC), DH testcross (DHTC), recombinant inbred testcross (RITC), F2, and F3 progeny. These models are functions of the means of quantitative trait locus genotypes and recombination frequencies between marker and quantitative trait loci. In addition to the genetic models, we describe maximum likelihood methods for estimating these parameters using linear, nonlinear, and univariate or multivariate normal distribution mixture models. We defined recombination frequency estimators for backcross and F2 progeny group genetic models using the parameters of linear models. In addition, we found a genetically unbiased estimator of the QTL heterozygote mean using a linear function of marker means. In nonlinear models, recombination frequencies are estimated less efficiently than the means of quantitative trait locus genotypes. Recombination frequency estimation efficiency decreases as the distance between markers decreases, because the number of progeny in recombinant marker classes decreases. Mean estimation efficiency is nearly equal for these methods.  相似文献   

9.
Wang K 《Human heredity》2003,55(1):1-15
The use of correlated phenotypes may dramatically increase the power to detect the underlying quantitative trait loci (QTLs). Current approaches for multiple phenotypes include regression-based methods, the multivariate variance of components method, factor analysis and structural equations. Issues with these methods include: 1) They are computation intensive and are subject to problems of optimization algorithms; 2) Existing claims on the asymptotic distribution of the likelihood ratio statistic for the multivariate variance of components method are contradictory and erroneous; 3) The dimension reduction of the parameter space under the null hypothesis, a phenomenon that is unique to multivariate analyses, makes the asymptotic distribution of the likelihood ratio statistic more complicated than expected. In this article, three cases of varying complexity are considered. For each case, the efficient score statistic, which is asympotically equivalent to the likelihood ratio statistic, is derived, so is its asymptotic distribution [correction]. These methods are straightforward to calculate. Finite-sample properties of these score statistics are studied through extensive simulations. These score statistics are for use with general pedigrees.  相似文献   

10.
Mapping quantitative trait loci using the MCMC procedure in SAS   总被引:1,自引:0,他引:1  
S Xu  Z Hu 《Heredity》2011,106(2):357-369
The MCMC procedure in SAS (called PROC MCMC) is particularly designed for Bayesian analysis using the Markov chain Monte Carlo (MCMC) algorithm. The program is sufficiently general to handle very complicated statistical models and arbitrary prior distributions. This study introduces the SAS/MCMC procedure and demonstrates the application of the program to quantitative trait locus (QTL) mapping. A real life QTL mapping experiment in wheat female fertility trait was used as an example for the demonstration. The fertility trait phenotypes were described under three different models: (1) the Poisson model, (2) the Bernoulli model and (3) the zero-truncated Poisson model. One QTL was identified on the second chromosome. This QTL appears to control the switch of seed-producing ability of female plants but does not affect the number of seeds produced once the switch is turned on.  相似文献   

11.
In this paper, the theory of joint mapping of quantitative trait loci is extended to F2 populations. Two independent regression equations, related to the additive and dominance effects respectively, are derived. Therefore, there are three alternative strategies for mapping QTLs, called additive-based mapping (ABM), dominance-based mapping (DBM) and additive-dominance-based mapping (ADBM). Simulation results have shown that ADBM is the most appropriate in most situations.  相似文献   

12.
Svishcheva GR 《Genetika》2007,43(2):265-275
A method is proposed for analysis of quantitative traits in animal hybrid pedigrees formed by crosses between outbred lines differing in allele frequencies of the genes controlling the trait studied. The method is based on the decomposition of trait variances into components and uses maximization of the likelihood function for estimating model parameters, which allows the estimation of additive and dominance effects of the gene involved in trait determination and its allele frequencies, as well as determination of the chromosomal position of this gene relative to genotyped markers. To test the linkage of this gene with markers, a statistic with the noncentral chi(2) distribution has been chosen. Analytical expressions for the power of this method have been derived. The method has been tested on small model hybrid pedigrees. Phenotypic values of the trait and information on marker genotypes for each individual in hybrid pedigrees are original data for the analysis of a quantitative trait.  相似文献   

13.
Mapping quantitative trait loci for seedling vigor in rice using RFLPs   总被引:13,自引:0,他引:13  
Improving seedling vigor is an important objective of modern rice (Oryza saliva L.) breeding programs. The purpose of this study was to identify and map quantitative trait loci (QTL) underlying seedling vigor-related traits using restriction fragment length polymorphisms (RFLPs). An F2 population of 204 plants was developed from a cross between a low-vigor japonica cultivar Labelle (LBL) and a high-vigor indica cultivar Black Gora (BG). A linkage map was constructed of 117 markers spanning 1496 Haldane cM and encompassing the 12 rice chromosomes with an average marker spacing of 14 cM. The length of the shoots, roots, coleoptile and mesocotyl were measured on F3 families in slantboard tests conducted at two temperatures (18° and 25°C). By means of interval analysis, 13 QTLs, each accounting for 7% to 38% of the phenotypic variance, were identified and mapped in the two temperature regimes at a log-likelihood (LOD) threshold of 2.5. Four QTLs controlled shoot length, 2 each controlled root and coleoptile lengths and 5 influenced mesocotyl length. Single-point analysis confirmed the presence of these QTLs and detected additional loci for shoot, root and coleoptile lengths, these latter usually accounting for less than 5% of the phenotypic variation. Only 3 QTLs detected both by interval and singlepoint analyses were expressed under both temperature regimes. Additive, dominant and overdominant modes of gene action were observed. Contrary to what was predicted from parental phenotype, the low-vigor LBL contributed 46% of the positive alleles for shoot, root and coleoptile lengths. Positive alleles from the high-vigor parent BG were identified for increased root, coleoptile and mesocotyl lengths. However, BG contributed alleles with only minor effects for shoot length, the most important determinant of seedling vigor in water-seeded rice, suggesting that it would not be an ideal donor parent for introducing faster shoot growth alleles into temperate japonica cultivars.  相似文献   

14.
C Chen  K Ritland 《Heredity》2013,111(2):106-113
We present an approach for quantitative trait locus (QTL) mapping, termed as ‘lineage-specific QTL mapping'', for inferring allelic changes of QTL evolution along with branches in a phylogeny. We describe and analyze the simplest case: by adding a third taxon into the normal procedure of QTL mapping between pairs of taxa, such inferences can be made along lineages to a presumed common ancestor. Although comparisons of QTL maps among species can identify homology of QTLs by apparent co-location, lineage-specific mapping of QTL can classify homology into (1) orthology (shared origin of QTL) versus (2) paralogy (independent origin of QTL within resolution of map distance). In this light, we present a graphical method that identifies six modes of QTL evolution in a three taxon comparison. We then apply our model to map lineage-specific QTLs for inbreeding among three taxa of yellow monkey-flower: Mimulus guttatus and two inbreeders M. platycalyx and M. micranthus, but critically assuming outcrossing was the ancestral state. The two most common modes of homology across traits were orthologous (shared ancestry of mutation for QTL alleles). The outbreeder M. guttatus had the fewest lineage-specific QTL, in accordance with the presumed ancestry of outbreeding. Extensions of lineage-specific QTL mapping to other types of data and crosses, and to inference of ancestral QTL state, are discussed.  相似文献   

15.
J. Wang  M. Li  Z. Qin  J. Li  J. Li 《Animal genetics》2020,51(2):324-329
We detected growth-related QTL and associated markers from the backcross population of Exopalaemon carinicauda in the previous study. Based on our previous study, the 47 SNP markers associated with candidate growth trait QTL were selected to analyze the association between these markers and body weight (BW), body length and abdominal segment length traits in four different populations including wild population, a full-sib family, a half-sib family and a backcross population for evaluating their potential application of marker-assisted selection in E. carinicauda. The general linear model (GLM) and mixed linear model were applied and the associations between SNP loci and three growth-related traits verified. The results showed that the Marker79268 and Marker100644 were significantly associated with the BW trait in more than three populations by the GLM method. The Marker100644 was significantly associated with BW in the full-sib family, half-sib family and backcross populations by the GLM and mixed linear model methods. Our findings will provide useful SNP markers to go forward to improve growth performance through more refined marker-assisted selection in E. carinicauda.  相似文献   

16.
Meuwissen TH  Goddard ME 《Genetics》2000,155(1):421-430
A multimarker linkage disequilibrium mapping method was developed for the fine mapping of quantitative trait loci (QTL) using a dense marker map. The method compares the expected covariances between haplotype effects given a postulated QTL position to the covariances that are found in the data. The expected covariances between the haplotype effects are proportional to the probability that the QTL position is identical by descent (IBD) given the marker haplotype information, which is calculated using the genedropping method. Simulation results showed that a QTL was correctly positioned within a region of 3, 1.5, or 0.75 cM in 70, 62, and 68%, respectively, of the replicates using markers spaced at intervals of 1, 0.5, and 0.25 cM, respectively. These results were rather insensitive to the number of generations since the QTL occurred and to the effective population size, except that 10 generations yielded rather poor estimates of the QTL position. The position estimates of this multimarker disequilibrium mapping method were more accurate than those from a single marker transmission disequilibrium test. A general approach for identifying QTL is suggested, where several stages of disequilibrium mapping are used with increasingly dense marker spacing.  相似文献   

17.
We discuss strategies for mapping quantitative trait loci with emphasis on certain issues of study design that have recently received attention: e.g. genotyping only selected pedigrees and the comparative value of large pedigrees versus sib pairs. We use a standard variance components model and a parametrization of the genetic effects in which the 'segregation' parameters are locally orthogonal to the 'linkage' parameters. This permits simple explicit expressions for the expectation of the score statistic, which we use to compare the power of different strategies. We also discuss robustness of the score statistic.  相似文献   

18.
Xie C  Xu S 《Genetical research》2000,76(1):105-115
Knowledge of quantitative trait locus (QTL) mapping in polyploids is almost void, albeit many exquisite strategies of QTL mapping have been proposed and extensive investigations have been carried out in diploid animals and plants. In this paper we develop a simple algorithm which uses an iteratively reweighted least square method to map QTLs in tetraploid populations. The method uses information from all markers in a linkage group to infer the probability distribution of QTL genotype under the assumption of random chromosome segregation. Unlike QTL mapping in diploid species, here we estimate and test the compound 'gametic effect', which consists of the composite 'genic effect' of alleles and higher-order gene interactions. The validity and efficiency of the proposed method are investigated through simulation studies. Results show that the method can successfully locate QTLs and separates different sources (e.g. additive and dominance) of variance components contributed by the QTLs.  相似文献   

19.
A simulation study was performed to see whether selection affected quantitative trait loci (QTL) mapping. Populations under random selection, under selection among full-sib families, and under selection within a full-sib family were simulated each with heritability of 0.3, 0.5, and 0.7. They were analyzed with the marker spacing of 10 cM and 20 cM. The accuracy for QTL detection decreased for the populations under selection within full-sib family. Estimates of QTL effects and positions differed (P < .05) from their input values. The problems could be ignored when mapping a QTL for the populations under selection among full-sib families. A large heritability helped reduction of such problems. When the animals were selected within a full-sib family, the QTL was detected for the populations with heritability of 0.5 or larger using the marker spacing of 10 cM, and with heritability of 0.7 using the marker spacing of 20 cM. This study implied that when selection was introduced, the accuracy for QTL detection decreased and the estimates of QTL effects were biased. A caution was warranted on the decision of data (including selected animals to be genotyped) for QTL mapping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号