首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the administration of monosialoganglioside (GM1) on methylmalonic acid (MMA)-induced convulsions, production of thiobarbituric acid reactive substances (TBARS) and on the striatal content of ascorbic acid and total non-protein thiol (SH) groups were evaluated in adult male rats. Animals received two intraperitoneal injections of GM1 (50 mg/kg) or saline (0.85% NaCl) spaced 24h apart. Thirty minutes after the second GM1 or saline injection, L-MMA (6 micromol) or NaCl (9 micromol) was injected into the right striatum and the animals were observed for the appearance of convulsions for 15 min. The animals were sacrificed and their striatal content of ascorbic acid, SH groups and TBARS was measured. The effect of GM1 on MMA-induced TBARS production in striatal homogenates was also evaluated in vitro.MMA injection caused convulsions (Sal-MMA: 9.8+/-1.4 episodes, which lasted 271+/-48 s) and increased the striatal content of TBARS (Sal-MMA: 149.0+/-11.5 nmol MDA/g tissue), but did not alter total striatal SH or ascorbic acid contents. GM1 pretreatment decreased MMA-induced convulsions (GM1-MMA: 6.3+/-2.0 episodes, which lasted 115.1+/-42.2s) and TBARS increase (GM1-MMA: 102.4+/-19.5 nmol MDA/g tissue). GM1 pretreatment increased ascorbic acid content of the striata (saline-pretreated: 1514+/-75.9; GM1-pretreated: 1878.6+/-102.8 microg ascorbic acid/mg tissue). MMA increased TBARS production in vitro, and GM1 had no effect on such MMA-induced effect.This study provides evidence that GM1 increases striatal ascorbic acid content and decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters.  相似文献   

2.
The kinetic properties of a gill Na(+), K(+)-ATPase from the freshwater shrimp Macrobrachium olfersii were studied using p-nitrophenylphosphate (PNPP) as a substrate. Sucrose gradient centrifugation of the microsomal fraction revealed a single protein fraction that hydrolyzed PNPP. The Na(+), K(+)-ATPase hydrolyzed PNPP (K(+)-phosphatase activity) obeying Michaelis-Menten kinetics with K(M)=1.72+/-0.06 mmol l(-1) and V(max)=259.1+/-11.6 U mg(-1). ATP was a competitive inhibitor of K(+)-phosphatase activity with a K(i)=50.1+/-2.5 micromol l(-1). A cooperative effect for the stimulation of the enzyme by potassium (K(0.5)=3.62+/-0.18 mmol l(-1); n(H)=1.5) and magnesium ions (K(0.5)=0.61+/-0.02 mmol l(-1), n(H)=1.3) was found. Sodium ions had no effect on K(+)-phosphatase activity up to 1.0 mmol l(-1), but above 80 mmol l(-1) inhibited the original activity by approximately 75%. In the range of 0-10 mmol l(-1), sodium ions did not affect stimulation of the K(+)-phosphatase activity by potassium ions. Ouabain (K(i)=762.4+/-26.7 micromol l(-1)) and orthovanadate (K(i)=0.25+/-0.01 micromol l(-1)) completely inhibited the K(+)-phosphatase activity, while thapsigargin, oligomycin, sodium azide and bafilomycin were without effect. These data demonstrate that the activity measured corresponds to that of the K(+)-phosphatase activity of the Na(+), K(+)-ATPase alone and suggest that the use of PNPP as a substrate to characterize K(+)-phosphatase activity may be a useful technique in comparative osmoregulatory studies of Na(+), K(+)-ATPase activities in crustacean gill tissues, and for consistent comparisons with well known mechanistic properties of the vertebrate enzyme.  相似文献   

3.
The kinetic properties of a microsomal gill (Na(+), K(+)) ATPase from the blue crab, Callinectes danae, acclimated to 15 per thousand salinity for 10 days, were analyzed using the substrate p-nitrophenylphosphate. The (Na(+), K(+))-ATPase hydrolyzed the substrate obeying Michaelian kinetics at a rate of V=102.9+/-4.3 U.mg(-1) with K(0.5)=1.7+/-0.1 mmol.L(-1), while stimulation by magnesium (V=93.7+/-2.3 U.mg(-1); K(0.5)=1.40+/-0.03 mmol.L(-1)) and potassium ions (V=94.9+/-3.5 U.mg(-1); K(0.5)=2.9+/-0.1 mmol.L(-1)) was cooperative. K(+)-phosphatase activity was also stimulated by ammonium ions to a rate of V=106.2+/-2.2 U. mg(-1) with K(0.5)=9.8+/-0.2 mmol.L(-1), following cooperative kinetics (n(H)=2.9). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4) (+) ions. Sodium ions (K(I)=22.7+/-1.7 mmol.L(-1)), and orthovanadate (K(I)=28.1+/-1.4 nmol.L(-1)) completely inhibited PNPPase activity while ouabain inhibition reached almost 75% (K(I)=142.0+/-7.1 micromol.L(-1)). Western blotting analysis revealed increased expression of the (Na(+), K(+))-ATPase alpha-subunit in crabs acclimated to 15 per thousand salinity compared to those acclimated to 33 per thousand salinity. The increase in (Na(+), K(+))-ATPase activity in C. danae gill tissue in response to low-salinity acclimation apparently derives from the increased expression of the (Na(+), K( (+) ))-ATPase alpha-subunit; phosphate-hydrolyzing enzymes other than (Na(+), K(+))-ATPase are also expressed. These findings allow a better understanding of the kinetic behavior of the enzymes that underlie the osmoregulatory mechanisms of euryhaline crustaceans.  相似文献   

4.
The present study examined the possible role of dopamine on the response of Na(+), K(+)-ATPase activity in the striatum of newborn piglets to 1 h of bilateral carotid ligation with hemorrhage and 2 h of recovery. Newborn piglets, 2-4 days of age and with and without prior treatment with alpha-methyl-p-tyrosine (AMT), an inhibitor of catecholamines synthesis, were used for the study. The oxygen pressure in the microvasculature of the cortex (PcO(2)) was measured by oxygen dependent quenching of the phosphorescence. In sham-operated animals the PcO(2) was 50+/-3 torr. Following ligation and hemorrhage the PcO(2) decreased to 8+/-0.5 torr. After release of ligation and reperfusion PcO(2) increased to 45+/-4 torr, a value not significantly different from controls, in approximately 30 min. There were no significant differences in PcO(2) between AMT treated and untreated animals. In sham-operated animals striatal Na(+),K(+)-ATPase was 29.1+/-3 micromol/mg protein per h and decreased by 25% after 2 h of recovery. Depleting the brain of catecholamines prior to ligation and hemorrhage abolished this decrease. It is postulated that the decrease in the level of dopamine in the brain prior to ligation and hemorrhage can be at least partly responsible for the observed decrease in activity of Na(+), K(+)-ATPase in the striatum of newborn piglets.  相似文献   

5.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

6.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

7.
The aim of this study was to investigate whether endogenous superoxide anion is involved in the regulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase activities. The study was performed in male Wistar rats. Compounds modulating superoxide anion concentration were infused under general anaesthesia into the abdominal aorta proximally to the renal arteries. The activity of ATPases was assayed in isolated microsomal fraction. We found that infusion of a superoxide anion-generating mixture, xanthine oxidase (1 mU/min per kg) + hypoxanthine (0.2 mumol/min per kg), increased the medullary Na(+),K(+)-ATPase activity by 49.5% but had no effect on cortical Na(+),K(+)-ATPase and either cortical or medullary ouabain-sensitive H(+),K(+)-ATPase. This effect was reproduced by elevating endogenous superoxide anion with a superoxide dismutase inhibitor, diethylthiocarbamate. In contrast, a superoxide dismutase mimetic, TEMPOL, decreased the medullary Na(+),K(+)-ATPase activity. The inhibitory effect of TEMPOL was abolished by inhibitors of nitric oxide synthase (L-NAME), soluble guanylate cyclase (ODQ) and protein kinase G (KT5823). The stimulatory effect of diethylthiocarbamate was not observed in animals pretreated with a synthetic cGMP analogue, 8-bromo-cGMP. An inhibitor of NAD(P)H oxidase, apocynin (1 mumol/min per kg), decreased the Na(+),K(+)-ATPase activity in the renal medulla and its effect was prevented by L-NAME, ODQ or KT5823. In contrast, a xanthine oxidase inhibitor, oxypurinol, administered at the same dose was without effect. These data suggest that NAD(P)H oxidase-derived superoxide anion increases Na(+),K(+)-ATPase activity in the renal medulla by reducing the availability of NO. Excessive intrarenal generation of superoxide anion may upregulate medullary Na(+),K(+)-ATPase leading to sodium retention and blood pressure elevation.  相似文献   

8.
This study was carried out to ascertain the effects of maternal separation (3 h per day) of mothers from their pups in the neonatal period in rats, which has been suggested to induce a depressive-like state, would have long lasting effects on different parameters including hippocampal Na(+), K(+)-ATPase activity, NO production, free radical production and antioxidant enzymes activities in dams. Fourty-eight Wistar rats were divided into 3 groups: control, brief separation (10 min) and long separation (3 h). The neonatal interventions were done on postpartum days 1-10. At 35 days post-partum the dams were killed and the hippocampal Na(+), K(+)-ATPase activity were measured, as well as the activity of the antioxidant enzymes catalase, glutathione peroxidase, superoxide dismutase, free radicals production, and the production of nitric oxide. Hippocampal Na(+), K(+)-ATPase activity was decreased in the brief separated group and in dams subjected to 3 h separation from their pups. A reduction in nitric oxide levels in the hippocampus in dams of the long separated group was also observed. It is concluded that the withdrawal of pups from their mothers make the mothers more susceptible to the development of neurochemical alterations that could be related to depressive features.  相似文献   

9.
Dopamine (DA) increases Na(+),K(+)-ATPase activity in lung alveolar epithelial cells. This effect is associated with an increase in Na(+),K(+)-ATPase molecules within the plasma membrane (). Analysis of Na(+),K(+)-ATPase motion was performed in real-time in alveolar cells stably expressing Na(+),K(+)-ATPase molecules carrying a fluorescent tag (green fluorescent protein) in the alpha-subunit. The data demonstrate a distinct (random walk) pattern of basal movement of Na(+),K(+)-ATPase-containing vesicles in nontreated cells. DA increased the directional movement (by 3.5 fold) of the vesicles and an increase in their velocity (by 25%) that consequently promoted the incorporation of vesicles into the plasma membrane. The movement of Na(+),K(+)-ATPase-containing vesicles and incorporation into the plasma membrane were microtubule dependent, and disruption of this network perturbed vesicle motion toward the plasma membrane and prevented the increase in the Na(+),K(+)-ATPase activity induced by DA. Thus, recruitment of new Na(+),K(+)-ATPase molecules into the plasma membrane appears to be a major mechanism by which dopamine increases total cell Na(+),K(+)-ATPase activity.  相似文献   

10.
The teleost pseudobranch is a gill-like structure often fused to the anterior of the opercular cavity. Pseudobranch cells are mitochondria rich and have high levels of Na(+), K(+)-ATPase activity. In this study, pseudobranch Na(+), K(+)-ATPase activity in juvenile chinook salmon (Oncorhynchus tshawytscha) was compared to gill Na(+), K(+)-ATPase activity, a known marker of parr-smolt transformation, in three experiments. In two stocks of New Zealand chinook salmon, pseudobranch Na(+), K(+)-ATPase activity was found to significantly increase during development. At these times gill Na(+), K(+)-ATPase activity was also elevated. Pseudobranch Na(+), K(+)-ATPase activity did not increase 10 days after transfer from fresh water to 34 ppt seawater, a treatment that resulted in a twofold increase in gill Na(+), K(+)-ATPase activity. Cortisol (50 microg/g) and ovine growth hormone (5 microg/g) implants had no effect on pseudobranch Na(+), K(+)-ATPase activity in underyearling chinook salmon, while gill Na(+), K(+)-ATPase activity was stimulated by each hormone. In yearling chinook salmon, only cortisol stimulated pseudobranch Na(+), K(+)-ATPase activity 14 days post-implantation. It was concluded that the pseudobranch differs from the gill in terms of the regulation of Na(+), K(+)-ATPase activity and a role during adaptation to seawater is likely to be limited.  相似文献   

11.
Parathyroid hormone (PTH) inhibits Na(+),K(+)-ATPase activity through protein kinase C- (PKC) and extracellular signal-regulated kinase- (ERK) dependent pathways and increases serine phosphorylation of the alpha(1)-subunit. To determine whether specific serine phosphorylation sites within the Na(+),K(+)-ATPase alpha(1)-subunit are involved in the Na(+),K(+)-ATPase responses to PTH, we examined the effect of PTH in opossum kidney cells stably transfected with wild type rat Na(+),K(+)-ATPase alpha(1)-subunit (WT), serine 11 to alanine mutant alpha(1)-subunit (S11A), or serine 18 to alanine mutant alpha(1)-subunit (S18A). PTH increased phosphorylation and endocytosis of the Na(+),K(+)-ATPase alpha(1)-subunit into clathrin-coated vesicles in cells transfected with WT and S18A rat Na(+),K(+)-ATPase alpha(1)-subunits. PTH did not increase the level of phosphorylation or stimulate translocation of Na(+),K(+)-ATPase alpha(1)-subunits into clathrin-coated vesicles in cells transfected with the S11A mutant. PTH inhibited ouabain-sensitive (86)Rb uptake and Na(+),K(+)-ATPase activity (ouabain-sensitive ATP hydrolysis) in WT- and S18A-transfected opossum kidney cells but not in S11A-transfected cells. Pretreatment of the cells with the PKC inhibitors and ERK inhibitor blocked PTH inhibition of (86)Rb uptake, Na(+),K(+)-ATPase activity, alpha(1)-subunit phosphorylation, and endocytosis in WT and S18A cells. Consistent with the notion that ERK phosphorylates Na(+),K(+)-ATPase alpha(1)-subunit, ERK was shown to be capable of causing phosphorylation of Na(+),K(+)-ATPase alpha(1)-subunit immunoprecipitated from WT and S18A but not from S11A-transfected cells. These results suggest that PTH regulates Na(+),K(+)-ATPase by PKC and ERK-dependent alpha(1)-subunit phosphorylation and that the phosphorylation requires the expression of a serine at the 11 position of the Na(+),K(+)-ATPase alpha(1)-subunit.  相似文献   

12.
Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of guanidinoacetate (GAA) and depletion of creatine. Affected patients present epilepsy and mental retardation whose etiopathogeny is unclear. In a previous study we showed that instrastriatal administration of GAA caused a reduction of Na(+),K(+)-ATPase and creatine kinase (CK) activities, as well as an increase in TBARS (an index of lipid peroxidation). In the present study we investigated the in vitro and in vivo effects of GAA on glucose uptake from [U-(14)C] acetate (citric acid cycle activity) and on the activities of complexes II, II-III, III and IV of the respiratory chain in striatum of rats. Results showed that 50 and 100 microM GAA (in vitro studies) and GAA administration (in vivo studies) significantly inhibited complexes II and II-III, respectively, but did not alter complexes III and IV, as well as CO(2) production. We also studied the influence of taurine or vitamins E and C on the inhibitory effects caused by intrastriatal administration of GAA on complexes II and II-III, Na(+),K(+)-ATPase and CK activities, and on TBARS in rat striatum. Pre-treatment with taurine and vitamins E and C revealed that taurine prevents the effects of intrastriatal administration of GAA on the inhibition of complex II, complex II-III, and Na(+),K(+)-ATPase activities. Vitamins E and C prevent the effects of intrastriatal administration of GAA on the inhibition of CK and Na(+),K(+)-ATPase activities, and on the increase of TBARS. The data suggest that GAA in vivo and in vitro treatment disturbs important parameters of striatum energy metabolism and that oxidative damage may be mediating these effects. It is presumed that defects in striatum bioenergetics might be involved in the pathophysiology of striatum damage characteristic of patients with GAMT-deficiency.  相似文献   

13.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.  相似文献   

14.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

15.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

16.
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle.  相似文献   

17.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

18.
Na(+),K(+)-ATPase, a basolateral transporter responsible for tubular reabsorption of Na(+) and for providing the driving force for vectorial transport of various solutes and ions, can also act as a signal transducer in response to the interaction with steroid hormones. At nanomolar concentrations ouabain binding to Na(+),K(+)-ATPase activates a signaling cascade that ultimately regulates several membrane transporters including Na(+),K(+)-ATPase. The present study evaluated the long-term effect of ouabain on Na(+),K(+)-ATPase activity (Na(+) transepithelial flux) and expression in opossum kidney (OK) cells with low (40) and high (80) number of passages in culture, which are known to overexpress Na(+),K(+)-ATPase (Silva et al., 2006, J Membr Biol 212, 163-175). Activation of a signal cascade was evaluated by quantification of ERK1/2 phosphorylation by Western blot. Na(+),K(+)-ATPase activity was determined by electrophysiological techniques and expression by Western blot. Incubation of cells with ouabain induced activation of ERK1/2. Long-term incubation with ouabain induced an increase in Na(+) transepithelial flux and Na(+),K(+)-ATPase expression only in OK cells with 80 passages in culture. This increase was prevented by incubation with inhibitors of MEK1/2 and PI-3K. In conclusion, ouabain-activated signaling cascade mediated by both MEK1/2 and PI-3K is responsible for long-term regulation of Na(+) transepithelial flux in epithelial renal cells. OK cell line with high number of passages is suggested to constitute a particular useful model for the understanding of ouabain-mediated regulation of Na(+) transport.  相似文献   

19.
The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.  相似文献   

20.
Leptin, secreted by adipose tissue, is involved in the pathogenesis of arterial hypertension, however, the mechanisms through which leptin increases blood pressure are incompletely elucidated. We investigated the effect of leptin, administered for different time periods, on renal Na(+),K(+)-ATPase activity in the rat. Leptin was infused under anesthesia into the abdominal aorta proximally to the renal arteries for 0.5-3 h. Leptin administered at doses of 1 and 10 microg/min per kg for 30 min decreased the Na(+),K(+)-ATPase activity in the renal medulla. This effect disappeared when the hormone was infused for > or =1 h. Leptin infused for 3 h increased the Na(+),K(+)-ATPase activity in the renal cortex and medulla. The stimulatory effect was abolished by a specific inhibitor of Janus kinases (JAKs), tyrphostin AG490, as well as by an NAD(P)H oxidase inhibitor, apocynin. Leptin increased urinary excretion of hydrogen peroxide (H(2)O(2)) between 2 and 3 h of infusion. The effect of leptin on renal Na(+),K(+)-ATPase and urinary H(2)O(2) was augmented by a superoxide dismutase mimetic, tempol, and was abolished by catalase. In addition, infusion of H(2)O(2) for 30 min increased the Na(+),K(+)-ATPase activity. Inhibitors of extracellular signal regulated kinases (ERKs), PD98059 or U0126, prevented Na(+),K(+)-ATPase stimulation by leptin and H(2)O(2). These data indicate that leptin, by acting directly within the kidney, has a delayed stimulatory effect on Na(+),K(+)-ATPase, mediated by JAKs, H(2)O(2) and ERKs. This mechanism may contribute to the abnormal renal Na(+) handling in diseases associated with chronic hyperleptinemia such as diabetes and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号