首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separation methods for pharmacologically active xanthones   总被引:1,自引:0,他引:1  
Xanthones, as a kind of polyphenolic natural products with many strong bioactivities, are attractive for separation scientists due to the similarity and diversity of their structures resulting in difficult separation by chromatographic methods. High performance liquid chromatography (HPLC) and thin layer chromatography (TLC) are traditional methods to separate xanthones. Recently, capillary electrophoresis (CE), as a micro-column technique driven by electroosmotic flow (EOF), with its high efficiency and high-speed separation, has been employed to separate xanthones and determine their physicochemical properties such as binding constants with cyclodextrin (CD) and ionization constants. Since xanthones have been used in clinic treatment, the development of chromatographic and CE methods for the separation and determination of xanthones plays an essential role in the quality control of some herbal medicines containing xanthones. This article reviewed the separation of xanthones by HPLC, TLC and CE, citing 72 literatures. This review focused on the CE separation for xanthones due to its unique advantages compared to chromatographic methods. The comparison of separation selectivity of different CE modes including capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic capillary chromatography (MEEKC) and capillary electrochromatography (CEC) was discussed. Compared with traditional chromatographic methods such as HPLC and TLC, CE has higher separation efficiency, faster separation, lower cost and more flexible modes. However, because of low sensitivity of UV detector and low contents of xanthones in herbal medicines, CE methods have seldom been applied to the analysis of real samples although CE showed great potential for xanthone separation. The determination of xanthones in herbal medicines has been often achieved by HPLC. Hence, how to enhance CE detection sensitivity for real sample analysis, e.g. by on-line preconcentration and CE-MS, would be a key to achieve the quantitation of xanthones.  相似文献   

2.
Large-volume sample stacking using the electroosmotic flow (EOF) pump technique has been investigated for the quantification of 3-nitrotyrosine in urine of diabetic rats. The best separation conditions for these highly complex samples were obtained using capillary electrophoresis (CE) in the reversed polarity mode (i.e., injecting at the cathode and detecting at the anode) using cetyltrimethylammonium bromide (CTAB) in the running buffer. The optimum CE separation conditions were achieved using a phosphate buffer prepared with 0.15M phosphoric acid and 0.5 mM CTAB adjusted to pH 6.4 with sodium hydroxide. In such CE conditions, the limit of detection (LOD) was 1.77 microM for 3-nitrotyrosine with normal injection mode, meanwhile with the large-volume sample stacking technique a more than 20-fold improvement was observed (i.e., LOD = 0.08 microM was obtained) without noticeable loss of resolution. This value allowed the detection of 3-nitrotyrosine in urine from diabetic rats. To our knowledge, this work is one of the few applications showing the great possibilities of these stacking procedures to analyse biological samples by CE.  相似文献   

3.
Twelve nucleotides and seven nucleotide sugars in Chinese Hamster ovary (CHO) cells were determined by capillary electrophoresis (CE). The CE operating conditions of buffer pH value, ion strength, capillary temperature, polymer additive and cell extraction method were investigated. Optimum separation was achieved with 40 mM sodium tetraborate buffer (pH 9.5) containing 1% (w/v) polyethylene glycol (PEG) at a capillary temperature of 22 degrees C. Acetonitrile and chloroform were used for intracellular extraction. This method can be used to monitor intracellular carbohydrate metabolism.  相似文献   

4.
The application of capillary electrophoresis (CE) methods in forensic toxicology for the determination of illicit and/or misused drugs in biological samples is reviewed in the present paper. Sample pretreatments and direct injection modes used in CE for analysis of drugs in biological fluids are briefly described. Besides, applications of separation methods based on capillary zone electrophoresis or micellar electrokinetic chromatography with UV absorbance detection to (i) analysis of drugs of abuse, (ii) analysis of other drugs and toxicants of potential forensic interest and (iii) for metabolism studies are reviewed. Also, alternative CE methods are briefly discussed, including capillary isotachophoresis and separation on mixed polymer networks. High sensitivity detection methods used for forensic drug analysis in biological samples are then presented, particularly those based on laser induced fluorescence. A glimpse of the first examples of application of CE–mass spectrometry in forensic toxicology is finally given.  相似文献   

5.
Peptide mapping by capillary electrophoresis (CE) with UV detection is problematic for the characterization of proteins that can only be obtained at low micromolar concentrations. Dilution of peptide fragments during digestion of the protein can further reduce the detection sensitivity in peptide mapping to the point where analysis at sub-micromolar concentrations is not possible. A remedy to this problem is preconcentration (sample enrichment) of the proteolytic digest by solid-phase extraction (SPE). To minimize non-specific adsorptive losses during sample handling, on-line SPE–CE is preferred. However, packed-inlet SPE–CE is not always feasible due to either instrument or sample limitations. We describe here a simple method of preconcentration by discontinuous on-line SPE–CE, specifically applied to peptide mapping in low-pH separation buffer after protein digestion in a solid-phase enzyme microreactor. The SPE–CE system does not require application of a low pressure during electrophoretic separation to overcome reversed electroosmotic flow because the preconcentrator device is disconnected from the separation capillary before the electric field is applied. Up to a 500-fold preconcentration factor can be achieved with this device, which can be reused for many samples. Parameters such as the volume of desorption solution, the adsorption/desorption (chromatographic) process, reproducibility of packing the SPE preconcentrator and effects of sample concentration on the peptide map are investigated.  相似文献   

6.
The PyPuPu and PyPuPy intermolecular triple-stranded DNA (tsDNA) can be determined more easily by capillary electrophoresis (CE) than by traditional methods. The tsDNA and its component compounds can be well separated by using a sieving matrix of 1.0% hydroxypropylmethylcellulose (HPMC) containing 2.5 mM magnesium ions. Such factors as buffer pH, the concentration of triplex-forming oligonucleotide (TFO), temperature, and the concentration of magnesium cation in the formation and stabilization of triple-stranded helices have been studied with capillary electrophoresis. The triplex cannot be formed when the buffer pH is lower than 4.0. When the concentration of TFO is four times higher than that of dsDNA, all of the dsDNA molecules can be associated. The limit of capillary electrophoresis detection with good reproducibility is 0.5-1 nM (S/N = 3). The CE analysis of short tsDNA takes only 40 min, whereas gel electrophoresis needs at least 5 h.  相似文献   

7.
An integrated allele-specific (AS) polymerase chain reaction (PCR) and capillary electrophoresis (CE) microdevice has been developed for multiplex single nucleotide polymorphism (SNP) genotyping on a portable instrumentation, which was applied for on-site identification of HANWOO (Korean indigenous beef cattle). Twelve sets of primers were designed for targeting beef cattle's eleven SNP loci for HANWOO verification and one primer set for a positive PCR control, and the success rate for identification of HANWOO was demonstrated statistically. The AS PCR and CE separation for multiplex SNP typing was carried out on a glass-based microchip consisting of four layers: a microchannel plate for microfluidic control, a Pt-electrode plate for a resistance temperature detector (RTD), a poly(dimethylsiloxane) (PDMS) membrane and a manifold glass for microvalve function. The operation of the sample loading, AS PCR, microvalve, and CE on a chip was automated with a portable genetic analyzer, and the laser-induced fluorescence detection was performed on a miniaturized fluorescence detector. The blind samples were correctly identified as a HANWOO by showing one or two amplicon peaks in the electropherogram, while the imported beef cattle revealed more than five peaks. Our genetic analysis platform provides rapid, accurate, and on-site multiplex SNP typing.  相似文献   

8.
Yu Q  Zhao S  Ye F  Li S 《Analytical biochemistry》2007,369(2):187-191
A new analytical method based on capillary electrophoresis (CE) separation and optical fiber light-emitting diode (LED)-induced fluorescence detection has been developed for the determination of octopamine. Naphthalene-2,3-dicarboxaldehyde (NDA) was used for precolumn derivatization of octopamine. The separation and determination of the derivative was performed using a laboratory-built CE system with an optical fiber LED-induced fluorescence detector. Optimal separation was obtained at 20 kV using a background electrolyte solution consisting of 25 mM sodium borate (pH 9.2). High sensitivity detection was achieved by the optical fiber LED-induced fluorescence detection using a purple LED as the excitation source. The limit of detection (signal/noise=3) for octopamine was 5.0 x 10(-9)M. A calibration curve ranging from 1.0 x 10(-8) to 5.0 x 10(-7)M was shown to be linear. Using this method, the levels of octopamine in human plasma from healthy donors were determined.  相似文献   

9.
Zhao Y  Yang XB  Jiang R  Sun XL  Li XY  Liu WM  Zhang SY 《Chirality》2006,18(2):84-90
A new capillary electrophoresis (CE) method has been achieved for simultaneous separation and quantification of phenylalanine, N-acetylphenylalanine enantiomers, and prochiral N-acetylaminocinnamic acid, possibly co-existent in reaction systems or synthesized products of D-phenylalanine. The separation was carried out in an uncoated capillary under reversed-electrophoretic mode. Among the diverse charged cyclodextrins (CDs) examined, highly sulfated (HS)-beta-CD as the chiral selector exhibited the best enantioselectivity. The complete separation of the analytes was obtained under the optimum conditions of pH 2.5, 35 mM Tris buffer containing 4% HS-beta-CD, applied voltage -15 kV, and capillary temperature 25 degrees C. Furthermore, the proposed method was applied to the determination of optical purity and trace impurities in three batches of the asymmetric synthetic samples of D-phenylalanine, and satisfactory results were obtained. The determination recoveries of the samples were in the range of 97.8-103.8%, and precisions fell within 2.3-5.0% (RSD). The results demonstrate that this CE method is a useful, simple technique and is applicable to purity assays of D-phenylalanine.  相似文献   

10.
The separation and detection of acidic and neutral impurities in illicit heroin using capillary electrophoresis (CE) is described. Separations were achieved using charged cyclodextrin modified micellar electrokinetic capillary chromatography. The use of the anionic β-cyclodextrin sulfobutyl ether 1V in combination with sodium dodecyl sulfate significantly increased resolution. Improved selectivity and/or sensitivity in detection was obtained using photodiode array ultraviolet and laser-induced fluorescence detection. The phenanthrene-like heroin impurities exhibit high native fluorescence under krypton-fluoride laser excitation (248 nm). The limit of detection by laser-induced fluorescence detection for one of these solutes (acetylthebaol) is 1.8 ng/ml, 500 times more sensitive than UV. This methodology is applicable to analysis of both crude and refined heroin.  相似文献   

11.
The electrophoretic separation of DNA molecules is usually performed in thin slabs of agarose or polyacrylamide gel. However, DNA separations can be achieved more rapidly and efficiently within a microbore fused silica capillary filled with an uncrosslinked polymer solution. An early assumption was that the mechanism of DNA separation in polymer solution(SINGLEBOND)capillary electrophoresis (PS(SINGLEBOND)CE) is the same as that postulated to occur in slab gel electrophoresis, i.e., that entangled polymer chains form a network of "pores" through which the DNA migrates. However, we have demonstrated that large DNA restriction fragments (2.0(SINGLEBOND)23.1 kbp) can be separated by CE in extremely dilute polymer solutions, which contain as little as 6 parts per million [0.0006% (w/w)] of uncrosslinked hydroxyethyl cellulose (HEC) polymers. In such extremely dilute HEC solutions, far below the measured polymer entanglement threshold concentration, pore-based models of DNA electrophoresis do not apply. We propose a transient entanglement coupling mechanism for the electrophoretic separation of DNA in uncrosslinked polymer solutions, which is based on physical polymer/DNA interactions. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
Guihen E  Hogan AM  Glennon JD 《Chirality》2009,21(2):292-298
In this research, a capillary electrophoretic method for the fast enantiomeric resolution of (R,S)-naproxen was investigated. Method development involved variation of applied potential, buffer concentration, buffer pH, and cyclodextrin concentration. The optimum electrophoretic separation conditions were 110 mM sodium acetate run buffer (pH 6.0), 30 mM methyl-beta-cyclodextrin, 20% (v/v) acetonitrile, 25 degrees C. The total length of capillary was 48 cm, (50 microm I.D.) with ultra violet (UV) detection at 232 nm. Using these conditions, the number of theoretical plates was close to one million (896,000/m). The possibility of achieving a fast chiral separation of (R,S)-naproxen on a microchip of 2.5 cm in length was investigated. Complete enantiomeric resolution of naproxen was achieved in less than 1 min, on this microchip platform, with linear imaging UV detection. This system had the advantage of real-time separation monitoring, so that enantiomeric resolution could be visually observed, and high-speed chiral analysis was realized. The microchip electrophoresis (MCE) separation was compared with the capillary electrophoresis (CE) separation with regards to speed, efficiency, separation platform, and precision. This work highlights the potential of CE and MCE in future chiral separations.  相似文献   

13.
A capillary electrophoretic immunoassay with chemiluminescence detection (CEIA-CL) using a non-competitive format for analyzing tumor marker alpha-fetoprotein (AFP) has been developed. In this method, antigen (Ag) AFP reacts with an excess amount of horseradish peroxidase (HRP)-labeled antibody (Ab*). The free Ab* and the bound Ab*-Ag complex produced in the solution are separated by CE in a separation capillary. Then they catalyze the reaction of enzyme substrate luminol and H(2)O(2) in a reaction capillary following the separation capillary. Parameters affecting the CE separation and CL detection were investigated. Under the optimal conditions, the free Ab* and the Ab*-Ag complex were well separated within 4 min, the linear range and the detection limit (S/N=3) for AFP were 5-500 ng/ml and 0.85 ng/ml (1.2 x 10(-11)M), respectively. The proposed method has been applied satisfactorily in the analysis of human sera samples.  相似文献   

14.
A new analytical approach based on capillary electrophoresis-electrospray mass spectrometry (CE/ESI-MS) has provided new insight into the characterization of mannooligosaccharide caps from lipoarabinomannans (LAMs), which are key molecules in the immunopathogenesis of tuberculosis. This analytical approach requires oligosaccharide labeling with the fluorophore 1-aminopyrene-3,6,8-trisulfonate (APTS) by reductive amination at the reducing termini. Optimization of the separation and ionization conditions, such as the choice of capillary electrophoresis (CE) electrolyte buffers, is presented and discussed. Anionic separation of the mono and oligosaccharide APTS derivatives was finally achieved with aqueous triethylammonium formate buffer. It was found that in contrast to the triethylammonium phosphate buffer, the triethylammonium formate buffer was appropriate for CE/ESI-MS coupling analysis of APTS-carbohydrate derivatives. In this case, negative ESI-mass spectra of APTS-carbohydrate adducts showed mainly (M-2H)2-pseudomolecular ions and some sequence fragment ions allowing their non-ambiguous structural characterization at the picomolar level. This analytical approach was successfully applied to more complex mixtures of carbohydrates released by mild acid hydrolysis of the lipoarabinomannans from Mycobacterium bovis BCG. The APTS-mannooligosaccharide cap adducts were separated by CE and their structural characterization achieved by CE/ESI-MS analyses. Mannooligosaccharide caps were routinely analyzed by capillary electrophoresis-laser induced fluorescence (CE-LIF) from 50 fmol of lipoarabinomannans with mannosyl capping (ManLAMs) but sensitivity was about 50 times lower using ESI-MS detection.  相似文献   

15.
Although the separation efficiency of capillary electrophoresis (CE) is much higher than that of other chromatographic methods, it is sometimes difficult to adequately separate the complex ingredients in biological samples. This article describes how one effective and simple way to develop the separation efficiency in CE is to add some modifiers to the running buffer. The suitable running buffer modifier β-cyclodextrin (β-CD) was explored to fast and completely separate four phenylethanoid glycosides and aglycones (homovanillyl alcohol, hydroxytyrosol, 3,4-dimethoxycinnamic acid, and caffeic acid) in Lamiophlomis rotata (Lr) and Cistanche by capillary zone electrophoresis with ultraviolet (UV) detection. It was found that when β-CD was used as running buffer modifier, a baseline separation of the four analytes could be accomplished in less than 20 min and the detection limits were as low as 10−3 mg L−1. Other factors affecting the CE separation, such as working potential, pH value and ionic strength of running buffer, separation voltage, and sample injection time, were investigated extensively. Under the optimal conditions, a successful practical application on the determination of Lr and Cistanche samples confirmed the validity and practicability of this method.  相似文献   

16.
Fast and efficient analysis of proteins in physiological fluids is of great interest to researchers and clinicians alike. Capillary electrophoresis (CE) has proven to be a potentially valuable tool for the separation of proteins in specimens. However, a generally acknowledged drawback of this technique is the limited sample volumes which can be loaded onto the CE capillary which results in a poor concentration limit of detection. In addition, matrix components in samples may also interfere with separation and detection of analytes. Membrane preconcentration–CE (mPC–CE) has proved to be effective in overcoming these problems. In this report, we describe the systematic evaluation of parameters affecting on-line preconcentration/clean-up and separation of protein mixtures by mPC–CE. Method development was carried out with a standard mixture of proteins (lysozyme, myoglobin, carbonic anhydrase, and human serum albumin). First, using MALDI-TOF-MS, membrane materials with cation-exchange (R-SO3H) or hydrophobic (C2, C8, C18, SDB) characteristics were evaluated for their potential to retain proteins in mPC cartridges. Hydrophobic membranes were found most suitable for this application. Next, all mPC–CE analysis of protein samples were performed in polybrene coated capillaries and parameters affecting sample loading, washing and elution, such as the composition and volume of the elution solvent were investigated. Furthermore, to achieve optimal mPC–CE performance for the separation of protein mixtures parameters affecting postelution focusing and electrophoresis, including the composition of the background electrolyte and a trailing stacking buffer were varied. Optimal conditions for mPC–CE analysis of proteins using a C2 impregnated membrane preconcentration (mPC) cartridge were achieved with a background electrolyte of 5% acetic acid and 2 mM ammonium acetate, 60 nl of 80% acetonitrile in H2O as an elution solvent, and 60 nl of 0.5% ammonium hydroxide as a trailing stacking buffer. The developed method was used successfully to separate proteins in aqueous humor, which contains numerous proteins in a complex matrix of salts.  相似文献   

17.
Capillary electrophoresis (CE) has become a useful analytical tool for the analysis of microdialysis samples. However, CE with UV detection (CE-UV) does not provide detection limits sufficient to quantify glutathione (GSH) and glutathione disulfide (GSSG) in biological samples such as liver microdialysates, because of the small optical path length in the capillary. To overcome this limitation, an on-column preconcentration technique, pH-mediated base stacking, was used in this study to improve the sensitivity of CE-UV. This stacking technique allowed large volumes of high ionic strength sample injection without deterioration of the separation efficiency and resolution. A 26-fold increase in sensitivity was achieved for both GSH and GSSG using the pH-mediated base stacking, relative to normal injection without stacking. The limit of detection for GSH and GSSG was found to be 0.75 microM (S/N=6) and 0.25 microM (S/N=6), respectively. The developed method was used to analyze GSH and GSSG in liver microdialysates of anesthetized Sprague Dawley male rats. The basal concentrations of GSH and GSSG in the liver microdialysates of male rats were found to be 4.73+/-2.08 microM (n=7) and 5.52+/-3.66 microM (n=7), respectively.  相似文献   

18.
We have investigated free-solution capillary electrophoresis (FSCE) and micellar electrokinetic capillary chromatography (MECC) separations of metallothionein (MT) isoforms conducted in uncoated and surface-modified fused-silica capillaries. At alkaline pH, FSCE rapidly resolves isoforms belonging to the MT-1 and MT-2 charge classes. At acidic pH, additional resolution of MT isoforms is achieved. The use of high-ionic-strength (0.5 M) phosphate buffers can result in high peak efficiencies and increased resolution for some MT isoforms. Interior capillary surface coatings such as polyamine and linear polyacrylamide polymers permit separation of MT isoforms with enhanced resolution through their effects on electroosmotic flow (EOF) and protein-wall interactions. Improvements in MT isoform resolution can also be achieved by MECC using 100 mM borate buffer pH 8.4 containing 75 mM SDS. Deproteinization of tissue cytosol samples with acetonitrile (60–80%) or perchloric acid (7%) produces extracts that can be subjected to direct analysis of MT by FSCE or MECC. We conclude that optimal separation of MT isoforms by capillary electrophoresis (CE) can be achieved with the appropriate combination of different capillaries, buffers and sample preparation techniques.  相似文献   

19.
This review gives an overview of different separation strategies with nanomaterials and their use in capillary electrophoresis (CE) and capillary electrochromatography, as well as in microchip electrophoresis, including metal and metal oxide nanoparticles, carbon nanotubes, fullerene and polymer nanoparticles, as well as silica nanoparticles. The paper highlights the new developments and innovative applications of nanoparticles as pseudostationary phases or immobilized on the capillary surface for CE separation. The separation and characterization of target nanoparticles with different sizes by CE are reviewed likewise.  相似文献   

20.
This review gives an overview of different separation strategies with nanomaterials and their use in capillary electrophoresis (CE) and capillary electrochromatography, as well as in microchip electrophoresis, including metal and metal oxide nanoparticles, carbon nanotubes, fullerene and polymer nanoparticles, as well as silica nanoparticles. The paper highlights the new developments and innovative applications of nanoparticles as pseudostationary phases or immobilized on the capillary surface for CE separation. The separation and characterization of target nanoparticles with different sizes by CE are reviewed likewise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号