首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Young, clonal Norway spruce trees (Picea abies L.) were exposed for 2 years at high altitudes to ambient atmospheric concentrations of photooxidants containing hydroxymethyl hydroperoxide (HMHP) as an important constituent. In spruce needles from a site with higher concentrations of organic peroxides in air, the apoplastic peroxidase activities were significantly lower than in needles exposed to lower organic peroxide concentrations. Guaiacol peroxidase activities in total needle extracts were not affected. In vitro HMHP at a concentration of 35 [mu]M inhibited apoplastic and total needle guaiacol peroxidase activities by 50% at pH 5.25. At the same pH, ascorbate-specific peroxidase activity required about 100 [mu]M HMHP for 50% inhibition. At pH 7, 1.46 mM HMHP caused a 50% reduction in guaiacol peroxidase and a 13% reduction in ascorbate peroxidase activity. The present results suggest that HMHP in ambient air may affect peroxidase activity in spruce needles. Peroxidases located in the relatively acidic aqueous phase of the cell walls appear to be more susceptible to HMHP inhibition than those present in neutral or slightly alkaline symplastic compartments of cells such as the cytosol or chloroplasts.  相似文献   

3.
The responses of Norway spruce [Picea abies (L.) Karst.] to enhanced UV-B radiation during the 5-year treatment performed outdoors have been subjected to ecophysiological and growth analysis. The plants were exposed to UV-B radiation, simulating 17% ozone depletion. Ecophysiological parameters were monitored three times a year on three needle age classes, while growth was analysed at the end of each growth season. Spruce exhibited great variability in the amounts of photosynthetic pigments and methanol-soluble UV-B absorbing compounds, light use efficiency, photosynthesis and respiratory potential. The needle, branch and plant biomass production was not significantly affected during the 5-year treatment. The repeated-measures procedure comparing growth parameters through subsequent seasons, revealed a decrease of branch diameter under enhanced UV-B, which could be interpreted as a cumulative UV-B effect. The effects of UV-B radiation depended on needle development stage, interaction with environmental conditions and stresses. A reduced negative effect of UV-B radiation was observed during the prolonged drought in 2003, which was hypothesised as an alleviating effect. The tolerance of Norway spruce to elevated UV-B was to a large extent due to the high content of methanol-soluble UV-B absorbing compounds that was related neither to environmental conditions, including UV-B dose, nor to the developmental stage of the needles. The current year needles exhibited a tendency to increased production of UV-B absorbing compounds under elevated UV-B radiation. The outdoor study performed under variable environmental conditions showed great complexity of spruce response to enhanced UV-B.  相似文献   

4.
In addition to direct ecological functions in the interaction of plants with the environment, the emission of monoterpenes, especially from the foliage of evergreen trees, is of great importance for the production of ozone and photochemical oxidants in the troposphere. In the present work, we established a reproducible non-radioactive standard enzyme assay and characterized monoterpene synthase activities in needles of Norway spruce (Picea abies (L.) Karst.) and in leaves of holm oak (Quercus ilex L.). In Norway spruce, the dominant monoterpenes formed were alpha-pinene, camphene, and to a lesser extent beta-pinene and limonene. In holm oak, alpha-pinene, sabinene, and beta-pinene were the main products, while limonene was a minor component. Under optimum conditions, in both Norway spruce and holm oak, monoterpene formation remained constant up to 180 min and 90 min, respectively, and varied with the buffer and Mg2+ and Mn2+ concentrations used. Optimum temperature for monoterpene synthase activity was 40 degrees C in both species; optimal pH ranged between 6.5 and 7.5 in both species. Apparent Michaelis-constants for the substrate GDP were ca. 17.9 +/- 5.1 microM for Norway spruce and ca. 69.4 +/- 22.1 microM for holm oak. Molecular weight determination by FPLC indicated that the monoterpene synthases in Norway spruce and holm oak have native molecular weights of ca. 59 and 50 kDa, respectively.  相似文献   

5.
Methods were established, which render possible a simultaneous determination of ri-bulose-l,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) activity and chlorophyll content of Norway spruce (Picea abies Karst.) needles from a detergent-containing aqueous crude extract. Spruce RuBP carboxylase was tentatively characterized with regard to kinetic properties. Recovery experiments employing purified wheat RuBP carboxylase proved quantitative extraction of the enzyme from spruce foliage. Five timber stands consisting of 35–62 years old spruce, two of which exhibited the typical symptoms of recent spruce decline, were compared. For the needle generations 1 to 4 the enzyme activities as well as chlorophyll and protein concentrations were determined. The results do not indicate an involvement of RuBP carboxylase in spruce decline.  相似文献   

6.
The correlation between structural changes of the vascular bundles and needle yellowing was examined for needles of damaged spruce (Picea abies (L.) Karst.) growing at a Mg-deficient and ozone polluted mountain site in the Central Black Forest (840m a.s.l.). In the previous year's sun-exposed needles, the following sequence of events was observed: (1) rapid needle yellowing, (2) hypertrophy and anomalous divisions of cambium cells, (3) phloem collapse, and, (4) production of atypical xylem tracheids. Under defined shade (reduction of the photosynthetically active photon flux density of the ambient light by 85-90%), the needles remained green, while the phloem collapsed completely within the first 6 weeks of shading; subsequently, a reversal of the collapse was observed. Under both light conditions, the content of Mg not bound to chlorophyll (Mg(free)) was in the range of 0.1 mg g(-1) needle dry matter, and hardly changed throughout the investigation period. After Mg fertilization, the Mg(free) level of the previous year's needles increased to 0.2 mg g(-1) dry matter, the light-exposed needles remained green, and the vascular bundles developed no anomalies. The data show that the rapid needle yellowing of ozone-exposed Mg-deficient needles did not depend on the collapse of the phloem. Mg deficiency played a key role in the development of anomalous vascular bundles under light, and also appears to explain the transient changes in sieve cell structure under shade. The role of Mg deficiency, rather than ozone pollution, in the damage of the sieve cells was confirmed in a long-term ozone exposure experiment with young clonal spruce growing under defined conditions.  相似文献   

7.
 Increments in the radii of Norway spruce (Picea abies Karst.) and Yezo spruce (Picea jezoensis Carr.) trees that revealed symptoms of a decline in growth were analyzed by dendrochronological methods in an attempt to correlate past reductions in growth with their main causes. The trees were growing at different sites near the industrial district of Tomakomai, Hokkaido. A skeleton plot method was used to construct a series of pointer years that revealed the number of trees with a clear reduction in growth or recovery from such a reduction. An analysis of “abrupt growth changes” demonstrated that at least two periods of growth reduction were common to a large number of Norway spruce trees. The reduction events were related to the records of industrial activity near the forest and meteorological data. The growth reduction in the 1970s coincided with the start of operation of certain local factories, and its extent was related to the distance from the industrial region. By contrast, a reduction in growth in 1984 was detected at all the Norway spruce sites and the extent was approximately the same at all sites. This phenomenon was related to extreme drought conditions. Growth of Yezo spruce trees was less sensitive to industrial activity and to drought than that of Norway spruce. Thus, differences in response to air pollution and drought were observed between the two species. Received: 20 February 1996 / Accepted: 29 April 1996  相似文献   

8.
In numerous locations in Europe spruce trees are exposed to high loads of nitrogen. The present study was performed to characterize the distribution of nitrogen compounds under these conditions. For this purpose Norway spruce ( Picea abies [L.] Karst.) trees were cultivated under close-to-natural conditions of a forest understory in soil from an apparently nitrogen-limited field site in the Black Forest either with, or without supplementation of nitrogen as ammonium nitrate. After 11 and 20 months, growth, total nitrogen contents of the biomass, and total soluble non-proteinogenic nitrogen compounds (TSNN, i.e. nitrate, ammonium, soluble proteinogenic and non-proteinogenic amino compounds) in needles, xylem sap and phloem exudate were analysed. After 20 months of growth, N-fertilization had slightly enhanced the biomass of current-, but not of 1-year-old shoots. At both harvests, total N-content of 1-year-old needles was increased by N-fertilization, whereas current-year needles were not significantly affected. By contrast, TSNN was elevated by N-fertilization in both current-year and 1-year-old needles. The increase in TSNN was mainly attributed to an accumulation of arginine. Xylem sap analysis showed that the increase in TSNN of the needles was a consequence of enhanced nitrogen assimilation of the roots rather than the shoot. Since also TSNN in phloem exudates was enhanced, it appears that N-fertilization elevates the cycling pool of amino compounds in young Norway spruce trees. However, this pool seems to be subject to metabolic interconversion, since mainly glutamine and aspartate are transported in the xylem from the roots to the shoot, but arginine accumulated in the needles and the phloem.  相似文献   

9.
The objective of the present study was to investigate whether peak concentrations of ozone can deplete the apoplastic ascorbate pool of needles from Norway spruce trees (Picea abies L. Karst.) and, thereby, contribute to damage to forest trees. Twigs of forest trees grown at high altitude (1950m above sea level; Mt Patscherkofel, Austria) were enclosed in situ in chambers and fumigated for 5-5 or 17 h with ozone concentrations ranging from 60 to 798 nmol mol?1. Adjacent branches were fumigated with filtered air. Ozone influx into the foliage ranging from 1-7 to 17nmolm?2s?1 had little effect on whole-needle ascorbate or glutathione contents. However, apoplastic ascorbate decreased by about 30% when the needles were exposed to environmentally relevant ozone concentrations and increased about 3-fold at higher ozone concentrations. This response suggests the induction of ascorbate as a protective system and may also be important under field conditions. Needles of spruce trees from high altitude that were exposed to chronically increased ozone concentrations contained significantly higher apoplastic ascorbate concentrations than needles from spruce trees from lower altitudes with lower mean atmospheric ozone concentrations. The results show that peak concentrations of ozone do not act in spruce via a depletion of the apoplastic ascorbate pool.  相似文献   

10.
Summary Pool sizes of ATP and ADP were analysed in freeze-stopped, lyophilised homogenates of needles from Norway spruce [Picea abies (L.) Karst.]. Control experiments in which possible changes in adenylate pools during sample acquisition were investigated did not reveal significant differences between needles taken from branches in situ or within a 30-min period after cutting off a branch. In addition, pool sizes of ADP and ATP were not affected by changes in light intensity (between 60 and 1500 E*-m-2*s-1), which inevitably occur when samples have to be taken from the upper region of older trees. Levels of ATP and ADP showed considerable seasonal changes (May through October) with the highest ratios of ATP/ADP in developing needles. In general, there was a tendency towards increased ratios of ATP/ADP with increasing needle age. This observation was corroborated by analyses of needles from spruce trees of different age and growing under different conditions. Needles from declining trees or from trees specifically fumigated with low concentrations of ozone and sulphur dioxide had significantly increased ratios of ATP/ADP compared to controls. The results are discussed with respect to physiological responses connected with natural senescence and induced ageing.  相似文献   

11.
Chlorotic and green needles from Norway spruce (Picea abies L.) trees were sampled in the Calcareous Bavarian Alps in winter. The needles were used for analysis of the mineral and pigment contents, the levels of antioxidants (ascorbate, glutathione), and the activities of protective enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate radical reductase, dehydroascorbate reductase, glutathione reductase). In addition, the activities of two respiratory enzymes (glucose-6-phosphate dehydrogenase, NAD-malate dehydrogenase), which might provide the NADPH necessary for functioning of the antioxidative system, were determined. We found that chlorotic needles were severely manganese deficient (3 to 6 micrograms Mn per gram dry weight as compared with up to 190 micrograms Mn per gram dry weight in green needles) but had a similar dry weight to fresh weight ratio, had a similar protein content, and showed no evidence for enhanced lipid peroxidation as compared with green needles. In chlorotic needles, the level of total ascorbate and the activities of superoxide dismutase, monodehydroascorbate radical reductase, NAD-malate dehydrogenase, and glucose-6-phosphate dehydrogenase were significantly increased, whereas the levels of ascorbate peroxidase, dehydroascorbate reductase, glutathione reductase, and glutathione were not affected. The ratio of ascorbate to dehydroascorbate was similar in both green and chlorotic needles. These results suggest that in spruce needles monodehydroascorbate radical reductase is the key enzyme involved in maintaining ascorbate in its reduced state. The reductant necessary for this process may have been supplied at the expense of photosynthate.  相似文献   

12.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   

13.
Summary Damage in the older needles of Norway spruce [Picea abies (L.) Karst.] in the Fichtelgebirge (NE Bavaria, FRG) appears to result primarily from nutrient imbalances rather than from direct effects of air pollutants on the mesophyll of the needles. Support for this conclusion was obtained by altering the nutrition of older needles through the removal of terminal buds on several branches from a damaged and an undamaged spruce tree in spring. Various photosynthetic parameters, as well as the chloroplast pigment and nutrient concentrations, of 1- to 3-year-old needles on manipulated branches were compared with those of branches on which the new flush was allowed to develop during the course of the growing period. Removal of terminal buds affected only the 1-year-old needles. Elimination of the new flush resulted in a higher Ca and Mn content of the needles of the undamaged tree. This treatment also resulted in an increase of the photosynthetic capacity (under saturating light and CO2 conditions), carboxylation and light use efficiency, as well as net photosynthesis under natural conditions of the 1-year-old needles on the yellow chlorotic tree. This was accompanied by higher chlorophyll concentrations and an increase in Mg, Ca, Mn, and Zn content, and no visible signs of chlorosis developed in the experiment. By contrast, the needles of twigs in which the new flush was allowed to develop exhibited reductions in mineral content in the middle of the year. This was especially true for the elements Mg and Ca, and was accompanied by needle chlorosis and a depression of the capacity of photosynthesis. Thus it appears that there is a close relationship between the development of needle damage and nutrient imbalances in spruce. The retranslocation of elements from the 1-year-old needles to the new flush seems to play a major role in the development of needle bleaching. This approach thus supports the hypothesis described above and confirms a preliminary test with a similar experimental design, which had been conducted earlier.  相似文献   

14.
In order to investigate effects of magnesium deficiency on Norway spruce [Picea abies (L.) Karst.] photosynthesis, 100 well-nourished 5-year-old spruce trees were grown in sand culture, individually supplied with circulating nutrient solutions. Mineral nutrients were added to the nutrient solutions in optimal quantities and optimal relations to nitrogen. Magnesium was supplied at 0.203, 0.041 and 0.005 mM in order to simulate optimal nutrition, moderate deficiency and severe deficiency. Parameters of photosynthetic gas exchange, chlorophyll, magnesium and starch concentrations were determined in current-year and 1-year-old needles during one growing season. By mid May — 6 months after onset of the Mg deficiency treatments in late autumn — CO2-assimilation rates of 1-year-old needles were significantly decreased independent of the severity of the deficiency treatment, whereas the chlorophyll concentrations did not differ from the controls. The occurrence of yellowing symptoms during July did not further influence the Mg deficiency effect on photosynthesis. In contrast to 1-year-old needles, significant reductions of photosynthesis and chlorophyll in current-year needles were only caused by severely deficient Mg supply. Mg deficiency affected carboxylation efficiency but not light use efficiency. From the accumulation of starch in the needles, up to 30-fold of the controls, the conclusion has been drawn that reactions of CO2-fixation were affected by reduced carbohydrate export. The light-dependent pigment reduction, leading to the typical tipyellowing of needles, clearly reflects a secondary effect of Mg deficiency.  相似文献   

15.
To study the role of low UV‐B radiation in modulating the response of antioxidants to ozone, 4‐year‐old pine ( Pinus sylvestris L.) and spruce ( Picea abies L.) seedlings potted in natural soil, were exposed in phytochambers to fluctuating ozone concentrations between 9 and 113 nl 1−1 according to field data recorded at Mt Wank (1175 m above sea level, Bavaria, Germany) and two‐times ambient O3 levels. UV‐B radiation was either added at a biologically effective level of ca 1.2 kJ m−2 day−1 , which is close to that found in March at Mt Wank, or was excluded by filters (<0.08 kJ m−2 day−1). After one growth phase current‐year needles were collected and analysed for antioxidative enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6; guaiacol peroxidase, POD, EC 1.11.1.7) and soluble antioxidants (ascorbate, glutathione). CAT, POD, ascorbate and glutathione, but not SOD, were increased in needles of both species in response to twice ambient O3 levels. UV‐B radiation in the presence of ambient O3 caused an increase in total SOD activity in spruce but had no effects on antioxidants in pine. Twice ambient O3 levels together with low UV‐B radiation counteracted the O3‐induced increases in ascorbate and CAT in pine but not in spruce. Under these conditions spruce needles showed the highest antioxidative protection and revealed no indication of lipid peroxidation. Pine needles exposed to UV‐B and elevated O3 levels showed elevated lipid peroxidation and a 5‐fold increase in dehydroascorbate, suggesting that this species was less protected and suffered higher oxidative stress than spruce.  相似文献   

16.
The phyllosphere microbial populations inhabiting the needles of three conifer species, Scots pine (Pinus sylvestris L.), Sitka spruce (Picea sitchensis L.) and Norway spruce (Picea abies (L.) Karst.), exposed to SO2 and O3, in an open-air fumigation experiment were analysed over a 3 year period using serial dilution after washing, direct plating and a fluorescein diacetate (FDA) enzyme assay. Total fungal populations ranged from 102 to 105 colonyforming units (CPU) g?1 fresh weight of needles. The dominant fungi isolated from needles varied with tree species and isolation technique; Aureobasidium pullulans (de Bary) Arnaud was most common on Scots pine and Norway spruce and white yeasts on Sitka spruce using the dilution plating method. However, direct plating of needle segments onto culture media indicated that Sclerophoma pythiophila (Corda) Hohnel was dominant on Scots pine and A. pullulans on Sitka and Norway spruce. Green needles of Sitka spruce were found to be endophytically colonized by Rhizosphaera kalkhoffii Bubak, but seldom by Lophodermium piceae (Fuckel) Hohn during extensive sampling in 1990. Statistical analyses revealed significant differences (P<0.05) between plots in the 3 year mean of the total fungal populations or the fungal biomass (FDA assay) on all three tree species. Differences between plots were also observed for a number of dominant component species. Data were also analysed for treatment effects. A significant effect of SO2 treatment was observed on the total fungal populations on Sitka spruce (P<0.05) which were reduced markedly by the low-SO2 treatment, while the O3 treatment caused a significant increase in total fungal numbers on Scots pine (P<0.05). The FDA activity on needles of both Scots pine and Sitka spruce was noticeably higher in the 03-only treatment plot, but the overall O3 effect was not significant. Treatment effects were also detected on the occurrence of component species. The serial dilution method revealed an SO2 effect (P<0.05) of a reduction in the occurrence of pink yeasts on Sitka spruce and an O3 effect (P<0.05) of an increase in the occurrence of S. pythiophila on Sitka spruce (P<0.01) but a decrease of Epicoccum nigrum Link and Cladosporium spp. on Scots pine. The direct-plating method revealed an SO2 effect of an increase in S. pythiophila on Norway spruce (P<0.05). Ozone treatment caused a significant increase in the isolation of a black strain of A. pullulans on Norway spruce (P<0.05). Endophytic colonization of Sitka spruce needles by R. kalkhoffii was found to be increased on two occasions by O3 exposure.  相似文献   

17.
Three-month-old needles of Sitka spruce were less susceptible to Elatobium abietinutn than 15-month-old needles. Symptoms appeared after longer aphid feeding times but only a proportion of damaged needles fell. After short feeding periods symptoms appeared in more Norway spruce needles than in Sitka spruce, whereas longer feeding periods resulted in more needles producing symptoms in the Sitka spruce. The symptoms took 4—6 days longer to appear in Norway spruce, and needle fall followed a longer feeding period than on Sitka spruce. Following 72 h feeding, needle fall occurred more quickly on Sitka spruce than on Norway spruce. The time taken for needle fall to occur was inversely related to the feeding time in Sitka spruce but such a response was not evident in Norway spruce. The results are discussed in relation to the differences exhibited in the probing behaviour of the aphid on the two spruces.  相似文献   

18.
Seedlings of Picea sitchensis (Bong.) Carr. (Sitka spruce) have been grown in four different light regimes in growth chambers. Chloroplast fragments have been isolated from the needles and Photosystem I and Photosystem II activities measured. Measurements were made at eight photon flux densities giving light response curves for photosystem activity in needles grown in the four different light regimes. Chlorophyll concentration was higher in needles from the low cultivation light environments than in those from the high light environments. Photosystem activity was higher in needles from the high cultivation light environments. Evidence that Photosystem I was limiting photosynthesis in needles grown in the high light environments was obtained.  相似文献   

19.
Soil streptomycetes are commonly antagonistic against plant pathogens. However, interactions involving increased defense responses in the host plant, leading to suppression of plant disease development, have not yet been detailed. Here, the mechanisms were studied of disease suppression by Streptomyces sp. GB 4-2 against Heterobasidion root and butt rot in Norway spruce (Picea abies) seedlings. GB 4-2 promoted mycelial growth of the phytopathogenic fungus, germination rate of fungal spores, extension of germ tubes and early colonization of outer cortical layers of the plant root. Reduced colonization of the inner cortical cell layers was accompanied by the induction of cell wall appositions, and increased xylem formation in the vascular cylinder emerged after bacterium-fungus coinoculation. Bacterial treatment led to decreased water content in roots and needles and increased photosynthetic yield (F(v)/F(m)) and peroxidase activities in needles. The infection of needles by Botrytis cinerea was reduced by bacterial pretreatment. Complex interactions of GB 4-2 with Norway spruce and Heterobasidion abietinum were discovered. The bacterium promoted the growth of the phytopathogenic fungus but induced plant defense responses. Host responses indicate that GB 4-2 induces both local and systemic defense responses in Norway spruce.  相似文献   

20.
Vegetative buds represent developmental stage of Norway spruce (Picea abies L. Karst.) needles where chloroplast biogenesis and photosynthetic activity begin. We used the analyses of polyphasic chlorophyll a fluorescence rise (OJIP) to compare photosystem II (PSII) functioning in vegetative buds and fully photosynthetically active mature current-year needles. Considerably decreased performance index (PIABS) in vegetative buds compared to needles pointed to their low photosynthetic efficiency. Maximum quantum yield of PSII (Fv/Fm) in buds was slightly decreased but above limited value for functionality indicating that primary photochemistry of PSII is not holdback of vegetative buds photosynthetic activity. The most significant difference observed between investigated developmental stages was accumulation of reduced primary quinine acceptor of PSII (QA-) in vegetative buds, as a result of its limited re-oxidation by passing electrons to secondary quinone acceptor, QB. We suggest that reduced electron transfer from QA- to QB could be the major limiting factor of photosynthesis in vegetative buds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号