首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently cloned two thyroid-specific cDNAs encoding new members of the NADPH oxidase family. ThOX1 and ThOX2 proteins are colocalized with thyroperoxidase at the apical membrane of human thyroid cells. In the present study we have determined their subcellular localization and maturation in relation to their enzymatic activity. A majority of ThOX proteins accumulated inside the cell and only a small fraction was expressed at the surface. Western blots demonstrated that ThOX's are glycoproteins of 180,000 and 190,000. When totally deglycosylated the molecular weight of both ThOX1 and ThOX2 drops to 160,000. Ca(2+) stimulates the basal H(2)O(2) generation in PC Cl3 cells at a level corresponding to 20% of the leukocyte H(2)O(2) production stimulated by PMA. Nonthyroid cell lines transfected with ThOX1 and ThOX2 show only a single immunoreactive band in Western blot analysis, corresponding to the protein of 180,000. This "immature" protein remains exclusively intracellular and does not present any enzymatic activity. This is not modified by coexpression of thyroperoxidase and p22(Phox). Transfection of ThOX cDNAs into PLB-XCGD cells does not reconstitute their NADPH oxidase activity. We conclude that (1) the thyroid contains some elements of the leukocyte H(2)O(2)-generating system but not all of them; (2) ThOX's are predominantly or exclusively located inside the cell in thyrocytes or in transfected cells, respectively, and as such they are inactive; (3) ThOX's cannot replace gp91(Phox) in the leukocyte; and (4) the thyroid H(2)O(2)-generating system is analogous to the leukocyte system with regard to ThOX's and gp91(Phox) but very different in other aspects. Additional thyroid-specific components are probably required to get complete protein processing and full enzymatic activity in the thyroid.  相似文献   

2.
Hydrogen peroxide is the final electron acceptor for the biosynthesis of thyroid hormone catalyzed by thyroperoxidase at the apical surface of thyrocytes. Pig and human thyroid plasma membrane contain a Ca(2+)-dependent NAD(P)H oxidase that generates H(2)O(2) by transferring electrons from NAD(P)H to molecular oxygen. We purified from pig thyroid plasma membrane a flavoprotein which constitutes the main, if not the sole, component of the thyroid NAD(P)H oxidase. Microsequences permitted the cloning of porcine and human full-length cDNAs encoding, respectively, 1207- and 1210-amino acid proteins with a predicted molecular mass of 138 kDa (p138(Tox)). Human and porcine p138(Tox) have 86.7% identity. The strongest similarity was to a predicted polypeptide encoded by a Caenorhabditis cDNA and with rbohA, a protein involved in the Arabidopsis NADPH oxidase. p138(Tox) shows also similarity to the p65(Mox) and to the gp91(Phox) in their C-terminal region and have consensus sequences for FAD- and NADPH-binding sites. Compared with gp91(Phox), p138(Tox) shows an extended N-terminal containing two EF-hand motifs that may account for its calcium-dependent activity, whereas three of four sequences implicated in the interaction of gp91(Phox) with the p47(Phox) cytosolic factor are absent in p138(Tox). The expression of porcine p138(Tox) mRNA analyzed by Northern blot is specific of thyroid tissue and induced by cyclic AMP showing that p138(Tox) is a differentiation marker of thyrocytes. The gene of human p138(Tox) has been localized on chromosome 15q15.  相似文献   

3.
A novel protein expressed by entero-endocrine cells of the mouse stomach was named prepromotilin Related Peptide (ppMTLRP) since it shares sequence similarities with the prepromotilin (Tomasetto et al.). The mouse ppMTLRP was found identical to the rat precursor of ghrelin (ppghrelin), an endogenous ligand specific for the Growth Hormone Secretagogue receptor identified from rat stomach (Kojima et al.). In the present study the cDNA encoding the dog counterpart of ppMTLRP/Ghrelin has been isolated and sequenced. The dog ppMTLRP/Ghrelin cDNA showed scores of respectively 80% and 75% homology with its human and mouse counterparts. By translation of the dog ppMTLRP/Ghrelin cDNA sequences, two ORFs could be deduced encoding either a 117 amino acid ppMTLRP/Ghrelin or the deleted Gln14 ppMTLRP/Ghrelin, as it was also known in mouse, rat and man. The dog ppMTLRP/Ghrelin shared 91% similarity and 78% identity, and 89% similarity and 78% identity with the human and mouse ppMTLRP/Ghrelin proteins respectively. The best score of homology was found in the MTLRP/Ghrelin sequence itself. Indeed the dog MTLRP/Ghrelin peptide shared 100% similarity and 93% identity, and 96% identity and similarity, with the human and mouse MTLRP/Ghrelin. Using Northern blot analysis to study dog ppMTLRP/Ghrelin gene expression on dog adult gut tissues, maximal expression level was found in the stomach fundus and corpus, and no expression could be detected in the stomach antrum nor in the duodenum, jejunum, ileum, colon or liver. In conclusion, we have identified ppMTLRP/Ghrelin from dog, and found that it is highly conserved with man, mouse or rat. The expression pattern along the gastro-intestinal tract is similar to the expression pattern previously described in mouse.  相似文献   

4.
5.
6.
Human AMPD2 cDNA clones have been isolated from T-lymphoblast and placental lambda gt11 libraries utilizing a previously cloned rat partial AMPD2 cDNA as the probe. Alignment analysis of all cDNA clones indicates the presence of intervening sequences in several placental isolates. This has been confirmed by sequencing human AMPD2 genomic clones. Intervening sequences can be removed from the cDNA clones by restriction with endonucleases at unique sites within the proposed open reading frame. This results in a 3292-base pair cDNA proposed to contain the entire AMPD2 open reading frame, which would encode a 760-amino acid polypeptide with a predicted subunit molecular mass of 88.1 kDa. Nucleotide and predicted amino acid comparisons with the 264 base pairs of proposed coding sequences in the rat AMPD2 cDNA demonstrate 91% similarity and identity, respectively. A comparison of the predicted human AMPD1 and AMPD2 polypeptides demonstrates homology in their C-terminal domains. Included in this region is the conserved motif, SLSTDDP, proposed to be part of the catalytic site of all AMP deaminases. In contrast, the predicted N-terminal domains of the human AMPD1 and AMPD2 polypeptides are unique. When placed in a prokaryotic expression vector, the human AMPD2 cDNA expresses AMP deaminase activity which can be precipitated with polyclonal antisera specific for isoform L.  相似文献   

7.
Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) is an enzyme involved in lignin biosynthesis. We have previously isolated pure CAD enzyme as two closely related polypeptides of 44 and 42.5 kDa from tobacco stems. In this paper, we report partial amino acid sequences of these two polypeptides. Based on the peptide sequences mixed oligonucleotides were used to screen a tobacco stem cDNA library and CAD cDNA clones encoding the two polypeptides were identified. DNA sequence comparisons indicate very high sequence identity between these clones both in the coding and in the 5 and 3 untranslated sequences. The close similarity between the two CAD genes leads us to suggest that they do not represent different isoforms but are the same gene from each of the two parental lines of Nicotiana tabacum cv. Samsun. Sequence comparisons with alcohol dehydrogenase 1 (ADH1) from yeast shows sequence similarities of ca. 30%, while comparisons with maize, barley and potato ADH1 sequences show similarities of not more than 23%.Abbreviations CAD cinnamyl alcohol dehydrogenase (EC 1.1.1.195) - ADH alcohol dehydrogenase (EC 1.1.1.1)  相似文献   

8.
9.
Anti-Sm is an antibody specificity often associated with the autoimmune disease systemic lupus erythematosus. The polypeptides Sm-B'/B (estimated molecular mass 27 and 26 kDa, respectively) are primary targets of Sm antibodies. Sm-B'/B are part of the core polypeptides of small ribonucleoprotein particles (snRNP) involved in pre-mRNA splicing. Sm-B'/B share the same amino-terminal sequence as we determined by microsequence analyses of the purified polypeptides. Oligonucleotide probes based on that sequence were used to isolate seven clones from a human lymphoblastoid cDNA library in lambda gt10. The clones contained a single coding region for a protein of approximately 25 kDa. The predicted amino-terminal sequence was identical to that of the isolated Sm-B'/B polypeptides. In vitro translation experiments produced a protein immunoreactive with human polyclonal anti-Sm antibodies. The isolation of only one unique cDNA sequence suggests that Sm-B'/B may be post-translational variants encoded by a single message. The specific structural features which distinguish Sm-B' from Sm-B have yet to be determined. Northern blot analysis confirmed the diverse tissue and species distribution expected for these immunologically conserved polypeptides. The Sm-B'/B primary sequence is rich in proline (20%) and glycine (15%) residues. The prolines are concentrated in the carboxyl-terminal half of the protein and display a repetitive unit that is shared with other snRNP and nucleic acid binding proteins. Analysis of these arrays suggests an eight residue proline-rich consensus sequence with potential as either an RNA binding domain, or as a site of protein/protein interaction.  相似文献   

10.
11.
cDNA clones for two subunits (designated subunits K and L) of rat liver multicatalytic proteinase (MCP) were isolated using oligonucleotide probes synthesized according to their partial amino acid sequences. The encoded polypeptides of subunits K and L consisted of 255 and 261 amino acid residues with calculated molecular mass of 28.3 kDa and 29.5 kDa, respectively. Northern blot analysis revealed that subunits K and L were expressed in all tissues examined and their expression patterns were almost identical. The deduced amino acid sequences showed no similarities to known protein sequences other than the recently reported sequences of rat and Drosophila MCP subunits. Sequence comparison of MCP subunits of rat and Drosophila revealed that the N-terminal two-thirds of the sequence (especially the N-terminal approximately 20 residues) is conserved, but the C-terminal third of the sequence shows no similarity, suggesting functional and structural roles for both regions. Implications for the structural and functional aspects of MCP subunits are discussed based on the sequence similarity.  相似文献   

12.
13.
H(2)O(2) is a crucial substrate of thyroproxidase (TPO) to iodinate thyroglobulin and synthesize thyroid hormones in thyroid. ThOX proteins (thyroid oxidase) also called Duox are believed to be responsible for H(2)O(2) generation. Duoxs expressed in transfected cells do not generate an active system, nor permit their membrane localization suggesting that other proteins are required to fulfill these functions. In this study, we demonstrate interactions of Duoxs with TPO and with p22(phox) without any effect on Duox activity. By yeast two-hybrid method using EF-hand fragment of dog Duox1 as the bait we have isolated EFP1 (EF-hand binding protein 1), one partner of Duoxs that belongs to the thioredoxin-related protein family. EFP1 shares moderate similarities with other members of thioredoxin-related proteins, but the characteristic active site and the folding structures are well conserved. EFP1 can be co-immunoprecipitated with Duoxs in transfected COS cells as well as in primary cultured human thyrocytes. It interacts also with TPO but not thyroglobulin. Immunofluorescence studies show that EFP1 and Duox proteins are co-localized inside the transfected cells, suggesting that EFP1 is not sufficient to induce either the expression of Duox at the plasma membrane or to permit H(2)O(2) production. EFP1 and Duox mRNA share similar distribution in nine different tissues. These results suggest that EFP1 could be one of the partners in the assembly of the multiprotein complex constituting the thyroid H(2)O(2) generating system but is certainly not sufficient to permit H(2)O(2) generation.  相似文献   

14.
Seven cDNA clones corresponding to the rab1, rab2, rab3A, rab3B, rab4, rab5, and rab6 genes were isolated from a human pheochromocytoma cDNA library. They encode 23-25 kDa polypeptides which share approximately 30-50% homology and belong to the ras superfamily. The rab1, rab2, rab3A, and rab4 proteins are the human counterparts of the rat rab gene products that we have previously characterized. Comparison of the seven human rab proteins with the yeast YPT1 (YPT1p) and SEC4 (SEC4p) proteins reveals highly significant sequence similarities. H-rab1p shows 75% amino acid identity with YPT1p and may be therefore considered as its human counterpart. The other proteins share approximately 40% homology with YPT1p and SEC4p. The homology (approximately 30%) between these rab proteins and p21ras is restricted to the four conserved domains involved in the GTP/GDP binding. Human rab proteins were produced in Escherichia coli. Large amounts of rab proteins in soluble form can be extracted and purified without the use of detergents. All six proteins bind GTP and exhibit GTPase activities. A possible involvement of the rab proteins in secretion is discussed.  相似文献   

15.
Cloned cDNA encoding the rat Sertoli cell receptor for FSH was isolated from a cognate library and functionally expressed in cultured mammalian cells. The FSH receptor (FSH-R), as predicted from the cDNA, is a single 75K polypeptide with a 348 residue extracellular domain which contains three N-linked glycosylation sites. This domain is connected to a structure containing seven putative transmembrane segments which displays sequence similarity to G protein-coupled receptors. Thus, the FSH-R is identical in its structural design to the LH/CG receptor (LH/CG-R). Furthermore, both receptors display 50% sequence similarity in their large extracellular domains and 80% identity across the seven transmembrane segments. Expression of the cloned cDNA in mammalian cells conferred FSH-dependent cAMP accumulation. The selectivity for FSH is attested by the fact that the related human glycoprotein hormones human CG and human TSH do not stimulate adenylyl cyclase in FSH-R expressing cells even when these hormones are present at high concentrations.  相似文献   

16.
Cationic amino acid transport activity in a canine lens epithelial cells (LEC) line was investigated. The transporter activity of arginine was 0.424 ± 0.047 nmol/mg protein min, while the presence of N-ethylmaleimide, an inhibitor of the canine cationic amino acid transporter (CAT), reduced transport activity by 30%. A full-length cDNA sequence of canine CAT1 was 2558 bp long and was predicted to encode the 629 amino acid polypeptides. The deduced amino acid sequence of canine CAT1 showed similarities of 92.1% and 88.6% to those of the human and mouse, respectively. Western blot analysis detected a band at 70 kDa in a membrane protein sample of LEC. RT-PCR analysis confirmed that CAT1 was ubiquitously detected in all tissues examined.  相似文献   

17.
Genomic structure of the sponge,Halichondria okadai calcyphosine gene   总被引:2,自引:0,他引:2  
Yuasa HJ  Nakatomi A  Suzuki T  Yazawa M 《Gene》2002,298(1):21-27
Calcyphosine is an EF-hand Ca(2+)-binding protein, which was first isolated from the canine thyroid. It is phosphorylated in a cyclic AMP (cAMP)-dependent manner; then it is thought to be implicated in the cross-signaling between the cAMP and calcium-phosphatidylinositol cascades. Here, we isolated the DNA complementary to RNA (cDNA) of an EF-hand Ca(2+)-binding protein from the sponge, Halichondria okadai and determined its genomic structure. The deduced sequence of the sponge Ca(2+)-binding protein showed significant similarity (about 40% identity) with those of mammal calcyphosines, and the intron positions were well conserved between the sponge and human calcyphosine genes. We considered that the isolated cDNA was that of sponge calcyphosine, and that sponge and mammalian calcyphosines evolved from a common ancestor gene. Recent cDNA projects have revealed that a calcyphosine cDNA is also expressed by human, mouse, and the ascidia. These cDNAs have more than 60% identity with sponge calcyphosine and each other, and all are composed of 208 amino acid residues. On the constructed phylogenetic trees, calcyphosines are essentially divided into two groups, types-I and -II calcyphosines. Type-I calcyphosine may be specific to mammals, and type-II is widely distributed among metazoan species. This suggests that type-II calcyphosine is a rather ancient gene with some essential function.  相似文献   

18.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is the most complicated enzyme in the respiratory chain and is composed of at least 26 distinct polypeptides. Two hydrophilic subfractions of bovine heart complex I were systematically resolved into individual polypeptides by chromatography. Three polypeptides (51, 24, and 9 kDa) were isolated from the flavoprotein fraction (FP) of complex I, and the complete amino acid sequence of the 9 kDa polypeptide was determined. The 9 kDa polypeptide is composed of 75 amino acids with a molecular weight of 8,437. This protein exhibits no obvious sequence similarity to other proteins. The iron-sulfur protein fraction (IP) of complex I was separated into eight polypeptides, 75, 49, 30, 20, 18, 15, 13 kDa-A, and 13 kDa-B. The 20 kDa polypeptide was recognized as a novel component of IP for the first time. The N-terminal and several peptide sequences of the 20 kDa polypeptide were determined. Comparison of the sequences revealed significant sequence similarities of the 20 kDa polypeptide to the psbG gene products encoded in the chloroplast genome. The conserved sequence in these proteins was also found in the small subunit of the nickel-containing hydrogenases. These results suggest that complex I is related to other redox enzyme complexes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号