首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have evaluated several novel nucleotide analogs suitable for enzymatic labeling of nucleic acid targets for a variety of array-based assays. Two new reagents in particular, a C4-labeled 1-(2′,3′-dideoxy-β-D-ribofuranosyl) imid- azole-4-carboxamide 5′-triphosphate 5 and an N1-labeled 5-(β-D- ribofuranosyl)-2,4(1H,3H)-pyrimidinedione 5′-triphosphate 3, were found to be excellent substrates for labeling with terminal deoxynucleotidyl transferase and T7 RNA polymerase, respectively.  相似文献   

2.
The ribosomal and transfer ribonucleic acid (tRNA) from Mycoplasma mycoides var. capri, grown in a medium containing uridine-((14)C)-5'-triphosphate and cytidine-(5-(3)H)-5'-triphosphate, were isolated and separated. The uridine in both species of RNA was shown to contain (14)C and the cytidine to contain both (3)H and (14)C. Comparison of the labeling of 4-thiouridine and pseudouridine, obtained from an enzymatic digest of the RNA, indicates that their biosynthetic precursor is uridine, not cytidine. It is probable that ribothymidine and dihydrouridine have the same derivation.  相似文献   

3.
To increase the efficiency of photoaffinity labeling of DNA polymerases, a binary system of photoaffinity reagents was applied. Photoreactive radioactive primers were synthesized by DNA polymerases beta (pol beta) or DNA polymerase from Thermus thermophilus (pol Tte) using a template-primer duplex in the presence of a dTTP analogue containing 4-azidotetrafluorobenzoyl group linked via spacers of varying length to 5-position of uridine ring- 5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-amino-trans-propenyl-1]-2'-deoxyuridine-5'-triphosphate (FAB-4-dUTP) or 5-[N-[[(2,3,5,6-tetrafluoro-4-azidobenzoyl)-butanoyl]-amino]-trans-3-aminopropenyl-1]-2'-deoxyuridine-5'-triphosphate (FAB-9-dUTP). The reaction mixtures were UV irradiated (lambda = 365-450 nm) in the absence or presence of a dTTP analog, containing a pyrene moiety-5-[N-(4-(1-pyrenyl)-butylcarbonyl)-amino-trans-propenyl-1]-2'-deoxyuridine-5'-triphosphate (Pyr- 8-dUTP) or 5-[N-(4-(1-pyrenyl)-ethylcarbonyl)-amino-trans-propenyl-1]-2'-deoxyuridine-5'-triphosphate (Pyr-6-dUTP). The most efficient crosslinking of both DNA polymerases was observed in the case of photoreactive DNA primer, carrying the FAB-4-dUMP moiety at the 3'-end, and Pyr-6-dUTP as a sensitizer. The binary system of photoaffinity reagents allows increasing photoaffinity labeling of the both DNA polymerases in comparison to the primer crosslinking without photosensitizer.  相似文献   

4.
Arylazides N-(4-azido-2,5-difluoro-3-chloropyridinyl-6)-beta-alanine (Ia) and N-(4-azido-2,5-difluoro-3-chloropyridinyl-6)-glycine (Ib) were synthesized and covalently attached to 5-(3-aminopropenyl-1)-dUTP through the amino group to give 5'-triphosphate (IIa) and 5'-triphosphate (IIb). The resulting azides were subjected to photolysis in aqueous solution. The spectral and photochemical characteristics of azides (I) and (II) imply that their use for the modification of biopolymers holds promise. Compounds (IIa, b) effectively substituted dTTP in DNA polymerization catalyzed by thermostable DNA polymerase from Thermus thermophilus B-35 (Tte DNA polymerase). Photoaffinity modification of Tte DNA polymerase was carried out by dTTP analogues (IIa, b) and by earlier obtained 5-[N-(5-azido-2-nitrobenzoyl)-trans-3-aminopropenyl-1]deoxyuridine 5'-triphosphate (III) and 5-[N-(4-azido-2,3,5,6-tetrafluorobenzyol)-trans-3- aminopropenyl-1]deoxyuridine 5'-triphosphate (IV) using two variants of labeling. All four dTTP analogues were shown to modify Tte DNA polymerase.  相似文献   

5.
3'-end labeling of DNA with [alpha-32P]cordycepin-5'-triphosphate   总被引:61,自引:0,他引:61  
C P Tu  S N Cohen 《Gene》1980,10(2):177-183
Cordycepin-5'-triphosphate (3'-deoxyadenosine-5'-triphosphate) can be incorporated into the 3'-ends of DNA fragments using terminal deoxynucleotidyl transferase from calf thymus (Bollum, 1974). Because cordycepin-5'-monophosphate lacks a 3'-OH group, only a single residue is incorporated. Furthermore, DNA molecules that contain cordycepin-5'-monophosphate at their 3'-ends become resistant to hydrolysis by exonucleases that require free 3'-OH ends. As an alternative to 5'-end labeling of complementary DNA strands, we have used [32P]cordycepin-5'-triphosphate labeling of 3'-ends to confirm the nucleotide sequence of a HhaI-endonuclease-generated pTU4-plasmid DNA fragment that contains several hot spots for insertions of the transposable genetic element Tn3. 3'-End labeling with [32P] cordycepin-5'-triphosphate has also proved useful in determining the sequence of the pTU4 DNA in the vicinity of a strategically located SstII endonuclease cleavage site in the replication region of the plasmid.  相似文献   

6.
A double-labeling procedure for sequence analysis of nonradioactive polyribonucleotides is detailed, which is based on controlled endonucleolytic degradation of 3'-terminally (3H)-labeled oligonucleotide-(3') dialcohols and 5"-terminal analysis of the partial (3H)-labeled fragments following their separation according to chain length by polyethyleneimine- (PEI-)cellulose TLC and detection by fluorography. Undesired nonradioactive partial digestion products are eliminated by periodate oxidation. The 5'-termini are assayed by enzymic incorporation of (32p)-label into the isolated fragments, enzymic release of (32p)-labeled nucleoside-(5') monophosphates, two-dimensional PEI-cellulose chromatography, and autoradiography. Using this procedure, as little as 0.1 - 0.3 A260 unit of tRNA is needed to sequence all fragments in complete ribonuclease T1 and A digests, whereas radioactive derivative methods previously described by us1-4 required 4 - 6 A260 units.  相似文献   

7.
To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14, 19 and 31 nt). Base substituted photoreactive dNTP analogs-5-[ N -(2-nitro-5-azidobenzoyl)- trans -3-amino-propenyl-1]-2'-deoxyuridine-5'-triphosphate (NAB-4-dUTP) and 5-[ N -[ N -(2-nitro-5-azidobenzoyl)glycyl]- trans -3-aminopropenyl-1]-2'-deoxyuridine-5'-triphosphate (NAB-7-dUTP)-were used as substrates for elongation of radiolabeled primer-template by DNA polymerases in the presence or absence of RPA. Subsequent UV crosslinking showed that the pattern of p32 and p70 RPA subunit labeling, and consequently their interaction with the template-primer junction, is strongly dependent on the template extension length at a particular RPA concentration, as well as on the ratio of RPA to template concentration. Our results suggest a model of changes in the RPA configuration modulating by the length of the template extension in the course of nascent DNA synthesis.  相似文献   

8.
A new reagent for photoaffinity modification of biopolymers, 5-[E-N-(2-nitro-5-azidobenzoyl)-3-amino-1-propen-1-yl]-2',3'-dideoxyuridine 5'-triphosphate (NAB-ddUTP), was synthesized. Like a similar derivative of 2'-deoxyuridine 5'-triphosphate (NAB-dUTP), it was shown to be able to effectively substitute for dTTP in the synthesis of DNA catalyzed by eukaryotic DNA polymerase beta and to terminate DNA synthesis. A 5'-32P-labeled primer with a photoreactive group at the 3'-terminus was derived from NAB-ddUTP and used for photoaffinity labeling of the human replication protein A (RPA). The covalent attachment of RPA p32 and p70 subunits to the labeled primers was demonstrated. NAB-ddUTP is a promising tool for studying the interaction of proteins of the replicative complex with NA in cellular extracts and living cells during the termination of DNA synthesis.  相似文献   

9.
3'-end labeling of RNA with recombinant yeast poly(A) polymerase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Two commonly used methods to end-label RNA-molecules are 5'-end labeling by polynucleotide kinase and 3'-end labeling with pCp and T4 RNA ligase. We show here that RNA 3'-ends can also be labeled with the chain-terminating analogue cordycepin 5'-triphosphate (3'-deoxy-ATP) which is added by poly(A) polymerase. For a synthetic RNA it is shown that 40% of cordycepin becomes incorporated when the nucleotide is used at limiting concentrations and that with an excess of cordycepin 5'-triphosphate essentially all the RNA becomes modified at its 3'-end. The reaction is complete within minutes and the RNA product is uniform and suitable for sequence analysis. The efficiency of labeling varies with different RNA-molecules and is different from RNA ligase. Poly(A) polymerase preferentially labels longer RNA-molecules whereas short RNA-molecules are labeled more efficiently by T4 RNA ligase.  相似文献   

10.
The parameters of the hydrolysis of ATP and several analogs by soluble mitochondrial ATPase were determined. Vmax of the reaction decreases within the range: 2'-desoxy-ATP greater than ATP greater than etheno-ATP greater than GTP greater than 3'-O-methylATP greater than UTP. ATP, 2'-desoxypATP, 3'O-methyl-ATP, GTP, and etheno-ATP are hydrolysed by soluble mitochondrial ATPase with close Km(app) values. CTP is not hydrolysed by the enzyme and does not inhibit the ATPase reaction at a concentration of 10(-2) M. Nucleoside triphosphate derivatives with an "open" ribose cycle 9-[1',5'-dihydroxy-4-(S)-hydroxymethyl-3'-oxapent-2' (R)-yl]adenyl-5'-triphosphate, and 1-[1',5'-dihydroxy-4'-(S)-hydroxymethyl-3'-oxapent-2'(R)-yl[cytosine-5'-triphosphate are effective inhibitors of ATPase (Ki approximately 5.10(-5)M). Mitochondrial ATPase binds the ATP analogs that have hydrocarbon radicals-(CH2)2-, -(CH2)3-, and (CH2)4- instead of the ribose residues: 9-(2'hydroxyethyl)adenyl-2'-triphosphate, 9-(3'-hydroxypropyl)-adenine-3'-triphosphate, and 9-(4'-hydroxybutyl)adenine-4'-triphosphyl)adenine-4'-triphosphate were not hydrolysed by the enzyme, although they inbibit the ATPase reaction (Ki 2.10(-4)M). 9-(2'-hydroxyethyl)adenine-2'-triphosphate is hydrolysed by ATPase eight times more slowly than ATP. It is suggested that the hydrolysis of the substrates of mitochondrial ATPase is- preceded by the binding of the substrates in a tense conformation in the active site of the enzyme.  相似文献   

11.
The chemical syntheses of novel digoxigenin-derivatized compounds are described which are modified substrates for enzymatically or photochemically non-radioactive digoxigenin labeling of nucleic acids. Various activated digoxigenin-haptens are coupled to 5-aminoallyl-substituted 2'-deoxyuridine-5'-triphosphate. This results in digoxigenin-modified nucleoside triphosphates of variable spacer lengths (Dig-[4]-dUTP/Dig-[11]-dUTP/Dig-[16]-dUTP) which can be used as substrates for enzymatic labeling of DNA with digoxigenin-haptens by Klenow enzyme-catalysed random-primed synthesis. In addition the synthesis of N-[4-azidobenzoyl]-N'-[(3-O-digoxigeninyl)methylcarbonyl)]-1 ,8-diamino- 3,6-dioxaoctane (photodigoxigenin), a photoactivatable analog of digoxigenin, is described which can be applied for photolabeling of DNA and RNA with digoxigenin-haptens leaving the nucleic acid molecules intact.  相似文献   

12.
GTP cyclohydrolase I catalyzes a mechanistically complex ring expansion affording dihydroneopterin triphosphate and formate from GTP. Single turnover quenched flow experiments were performed with the recombinant enzyme from Escherichia coli. The consumption of GTP and the formation of 5-formylamino-6-ribosylamino-2-amino-4(3H)-pyrimidinone triphosphate, formate, and dihydroneopterin triphosphate were determined by high pressure liquid chromatography analysis. A kinetic model comprising three consecutive unimolecular steps was used for interpretations where the first intermediate, 5-formylamino-6-ribosylamino-2-amino-4(3H)-pyrimidinone 5'-triphosphate, was formed in a reversible reaction. The rate constant k(1) for the reversible opening of the imidazole ring of GTP was 0.9 s(-1), the rate constant k(3) for the release of formate from 5-formylamino-6-ribosylamino-2-amino-4(3H)-pyrimidinone triphosphate was 2.0 s(-1), and the rate constant k(4) for the formation of dihydroneopterin triphosphate was 0.03 s(-1). Thus, the hydrolytic opening of the imidazole ring of GTP is rapid by comparison with the overall reaction.  相似文献   

13.
14.
Recent work has raised a question as to the involvement of erythrose-4-phosphate, a product of the pentose phosphate pathway, in the metabolism of the methanogenic archaea (R. H. White, Biochemistry 43:7618-7627, 2004). To address the possible absence of erythrose-4-phosphate in Methanocaldococcus jannaschii, we have assayed cell extracts of this methanogen for the presence of this and other intermediates in the pentose phosphate pathway and have determined and compared the labeling patterns of sugar phosphates derived metabolically from [6,6-2H2]- and [U-13C]-labeled glucose-6-phosphate incubated with cell extracts. The results of this work have established the absence of pentose phosphate pathway intermediates erythrose-4-phosphate, xylose-5-phosphate, and sedoheptulose-7-phosphate in these cells and the presence of D-arabino-3-hexulose-6-phosphate, an intermediate in the ribulose monophosphate pathway. The labeling of the D-ara-bino-3-hexulose-6-phosphate, as well as the other sugar-Ps, indicates that this hexose-6-phosphate was the precursor to ribulose-5-phosphate that in turn was converted into ribose-5-phosphate by ribose-5-phosphate isomerase. Additional work has demonstrated that ribulose-5-phosphate is derived by the loss of formaldehyde from D-arabino-3-hexulose-6-phosphate, catalyzed by the protein product of the MJ1447 gene.  相似文献   

15.
An extended series of alkyl carboxamide analogs of N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl- 1H-pyrazole-3-carboxamide (SR141716; 5) was synthesized. Each compound was tested for its ability to displace the prototypical cannabinoid ligands ([3H]CP-55,940, [3H]2; [3H]SR141716, [3H]5; and [3H]WIN55212-2, [3H]3), and selected compounds were further characterized by determining their ability to affect guanosine 5'-triphosphate (GTP)-gamma-[35S] binding and their effects in the mouse vas deferens assay. This systematic evaluation has resulted in the discovery of novel compounds with unique binding properties at the central cannabinoid receptor (CB1) and distinctive pharmacological activities in CB1 receptor tissue preparations. Specifically, compounds with nanomolar affinity which are able to fully displace [3H]5 and [3H]2, but unable to displace [3H]3 at similar concentrations, have been synthesized. This selectivity in ligand displacement is unprecedented, in that previously, compounds in every structural class of cannabinoid ligands had always been shown to displace each of these radioligands in a competitive fashion. Furthermore, the selectivity of these compounds appears to impart unique pharmacological properties when tested in a mouse vas deferens assay for CB1 receptor antagonism.  相似文献   

16.
5-Hydroxytryptamine1A (5-HT1A) receptor proteins were identified by a novel approach in which photoaffinity labeling technique was used in conjunction with affinity column chromatography. 5-HT1A receptors were solubilized from bovine frontal cortical membranes with 0.3% digitonin and 0.1% Nonidet P-40, and bound effectively to 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP)-coupled Affi-Gel 10 in a time-dependent manner. PAPP was shown previously to be a selective ligand for the 5-HT1A receptor. Two protein bands with molecular masses of approximately 55,000 and 38,000 daltons revealed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were eluted from the affinity column with either 1 mM 5-HT or 1 microM [3H]1-[2-(4-azidophenyl)ethyl]-4-(3-trifluoromethyl-phenyl)piperazine ([3H]p-azido-PAPP). [3H]p-Azido-PAPP is a selective photoaffinity labeling probe for the 5-HT1A receptor. The intensity of these two protein bands and the incorporation of [3H]p-azido-PAPP into these two proteins decreased significantly when the solubilized fraction was preincubated with excess 5-HT or PAPP (saturating all 5-HT1A receptors) prior to affinity column chromatography. These results suggest strongly that these two proteins are related to the 5-HT1A receptor protein. The isoelectric points of the photolabeled 5-HT1A receptor proteins were 6.0 and 6.5.  相似文献   

17.
To characterize proteins that interact with base excision/single-strand interruption repair DNA intermediates in cell free extracts of Saccharomyces cerevisiae, we used a combination of photoaffinity labeling with the protein identification by MALDI-TOF-MS peptide mapping. Photoreactive analogue of dCTP, namely exo-N-[4-(4-azido-2,3,5,6,-tetrafluorobenzylidenehydrazinocarbonyl)-butylcarbamoyl]-2'-deoxycytidine-5'-triphosphate, and [(32)P]-labeled DNA duplex containing one nucleotide gap were used to generate nick-containing DNA with a photoreactive dCMP residue at the 3'-margin of the nick. This photoreactive DNA derivative was incubated with the yeast cell extract and after UV irradiation a number of proteins were labeled. Two of the crosslinked proteins were identified as the catalytic subunit of DNA polymerase ? and Ddc1 checkpoint protein. Labeling of DNA polymerase ? catalytic subunit with the nick-containing DNA repair intermediate indicates that the DNA polymerase is involved in the DNA repair synthesis in yeast, at least at DNA single-strand interruptions. Crosslinking of Ddc1 to DNA nicks took place independently of the other components of checkpoint clamp, Mec3 and Rad17, suggesting that the protein alone is able to recognize DNA single-strand breaks. Indeed, purified GST-tagged Ddc1 protein was efficiently crosslinked to nick-containing DNA. The interaction of Ddc1 with DNA nicks may provide a link between the DNA damage checkpoint and DNA base excision/single-strand breaks repair pathways in yeast. In addition, we found that absence of Ddc1 protein greatly influences the overall pattern of other proteins crosslinked to DNA nick. We suggested that this last effect of Ddc1 is at least partially due to its capacity to prevent proteolytic degradation of the DNA-protein adducts.  相似文献   

18.
19.
G W Ashley  G Harris  J Stubbe 《Biochemistry》1988,27(12):4305-4310
The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-[(ethylthio)methyl]-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by 1H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. At high enzyme concentrations (0.1 mM), 1 equiv of [5'-3H]ClUTP resulted in 0.9 equiv of 3H bound to protein and 83% inactivation. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation. Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. While chromophore formation was prevented by NaBH4 treatment, the chromophore itself is resistant to reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Antibodies specific for acetylated isoforms of histone H4 have been used to compare acetylation of this histone in interphase and metaphase cells. Two rabbit antisera (R5 and R6) were used, each specific for H4 molecules acetylated at one of the four possible acetylation sites, namely Lys-5 (R6) and Lys-12 (R5). Both antisera bound preferentially to the more-acetylated H4 isoforms (H4Ac2-4). To test for continued H4 acetylation in metaphase chromosomes. Chinese hamster ovary cells were blocked in metaphase and treated for one hour with the deacetylase inhibitor sodium butyrate. Isolated chromosomes were assayed for H4 acetylation by antibody labeling and flow cytometry. H4 acetylation was increased several fold by this brief butyrate treatment. The increase was in direct proportion to DNA content, with no evidence for exceptionally high- or low-labeling chromosomes. The results demonstrate that a cycle of H4 acetylation and deacetylation continues within metaphase chromosomes. Immunofluorescence microscopy showed labeling to be distributed throughout the chromosome, but with variable intensity. Western blotting and immunostaining with R5 and R6 showed a net reduction in labeling of H4 from metaphase cells, with major reductions in the more-acetylated isoforms H4Ac3-4. In contrast, labeling of H4Ac1 was reduced to a lesser extent (R6) or increased (R5). This increase indicates more frequent use of the acetylation site at lysine 12 in H4Ac1 from metaphase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号