首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of N-acyl-5'-O-DMTr-d-nucleosides, or similarly protected DNA-dimers having a free 3'-OH group, with 2-chlorophenyl-0,0-bis(1-benzotriazolyl)phosphate affords reactive 3'-phosphotriester derivatives. The latter intermediates can be used, without further purification, for the synthesis of DNA-fragments on the controlled pore glass/long chain alkylamine support. Further, 2-cyano-1,1-dimethylethoxy dichlorophosphine proved to be very suitable for the preparation of 5'-phosphorylated DNA-fragments on the same type of solid support.  相似文献   

2.
The substrate specificities of Trypanosoma brucei and human (HeLa) GlcNAc-PI de-N-acetylases were determined using 24 substrate analogues. The results show the following. (i) The de-N-acetylases show little specificity for the lipid moiety of GlcNAc-PI. (ii) The 3'-OH group of the GlcNAc residue is essential for substrate recognition whereas the 6'-OH group is dispensable and the 4'-OH, while not required for recognition, cannot be epimerized or substituted. (iii) The parasite enzyme can act on analogues containing betaGlcNAc or aromatic N-acyl groups, whereas the human enzyme cannot. (iv) Three GlcNR-PI analogues are de-N-acetylase inhibitors, one of which is a suicide inhibitor. (v) The suicide inhibitor most likely forms a carbamate or thiocarbamate ester to an active site hydroxy-amino acid or Cys or residue such that inhibition is reversed by certain nucleophiles. These and previous results were used to design two potent (IC50 = 8 nM) parasite-specific suicide substrate inhibitors. These are potential lead compounds for the development of anti-protozoan parasite drugs.  相似文献   

3.
Rat liver chromatin contains a 3'-phosphatase/5'-OH kinase which may be involved in the repair of DNA strand breaks limited by 3'-phosphate/5'-OH ends. In order to determine whether the phosphate group can be transferred directly from the 3' to the 5' position, a polynucleotide duplex was synthesized between poly (dA) and oligo (dT) segments which had 3'-[32P]phosphate and 5'-OH ends. The oligo (dT) segments were separated by simple nicks as shown by the ability of T4 DNA ligase to seal the nick after the 3'-phosphate was removed by a phosphatase and the 5' end was phosphorylated with a kinase. The chromatin 3'-phosphatase/5'-OH kinase was unable to transfer phosphate directly from the 3' to the 5' end of the oligo (dT) segments in the original duplex; ATP was needed to phosphorylate the 5'-OH end. It is concluded that the chromatin 3'-phosphatase/5'-OH kinase is unable to convert a 3'-phosphate/5'-OH nick which cannot be repaired by DNA ligase directly into a 3'-OH/5'-phosphate nick which can be repaired by DNA ligase; the chromatin enzyme rather acts in two steps: hydrolysis of the 3'-phosphate followed by ATP-mediated phosphorylation of the 5'-OH end.  相似文献   

4.
The triester method was adapted to the synthesis of uridylyl/3'-5'/5-methylcytidylyl/3'-5'/guanosine. As the protecting groups 4-methoxy-5,6-dihydro-2H-pyran for 2'-OH and 5'-OH groups of uridine and 2'-OH group of 5-methylcytidine, methoxymethylidene for I:3'-cis-diol system of guanosine, and benzoyl for the amino groups of 5-methylcytidine and guanosine were used. The obtained product was characterised by UV, electrophoresis, chromatography, an enzymatic digestion and alkaline hydrolysis.  相似文献   

5.
An approach to the stereoselective synthesis of P-homochiral oligo(thymidine methanephosphonates) is described. Fully protected (Rp)- and (Sp)-diastereomers of MMTrTPMeTAC (3) were prepared in the stereospecific reaction of P-chiral nucleotide component 5'-O-monomethoxytritylthymidine 3'-O-[O-(4-nitrophenyl)methanephosphonate] (1) and 3'-O-acetylthmydine (2) bearing activated 5'-hydroxyl function. Deprotection of the 5'-OH group in 3 and subsequent stepwise reactions of activated 5'-OH oligonucleotide components with (Rp)- or (Sp)- isomers of 1 gave the trinucleotide MMTrTPMeTPMeTAC (4) and, subsequently, the tetranucleotide MMTrTPMeTPMeTPMeTAC (5) possessing all (Rp)- or all (Sp)- configurations at their internucleotide methanephosphonate P-atoms.  相似文献   

6.
The functional involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in the repair of DNA single- and double-strand breaks, DNA base damage, and related repair substrate intermediates remains unclear. Using an in vitro DNA repair assay and cell extracts derived from PARP-1 deficient or wild-type murine embryonic fibroblasts, we investigated the DNA synthesis and ligation steps associated with the rejoining of DNA single-strand interruptions containing 3'-OH, and either 5'-OH or 5'-P termini. Complete repair leading to DNA rejoining was similar between PARP-1 deficient cells and wild-type controls and poly(ADP-ribose) synthesis was, as expected, greatly reduced in PARP-1 deficient cell extracts. The incorporation of [32P]dCMP into repaired DNA at the site of a lesion was reduced two-three-fold in PARP-1 deficient cell extracts, demonstrating a decrease in repair patch size. Addition of purified PARP-1 to levels approximating those present in wild-type extracts did not stimulate DNA repair synthesis. We conclude that PARP-1 is not required for the efficient processing and rejoining of single-strand interruptions with defined 3'-OH and 5'-OH or 5'-P termini. Decreased DNA repair synthesis observed in PARP-1 deficient cell extracts is associated with reduced cellular expression of several factors required for long-patch base excision repair (BER), including FEN-1 and DNA ligase I.  相似文献   

7.
T4 RNA ligase 2 (Rnl2) exemplifies a family of RNA-joining enzymes that includes protozoan RNA-editing ligases. Rnl2 efficiently seals 3'-OH/5'-PO4 RNA nicks in either a duplex RNA or an RNA:DNA hybrid but cannot seal DNA nicks. RNA specificity arises from a requirement for at least two ribonucleotides immediately flanking the 3'-OH of the nick; the rest of the nicked duplex can be replaced by DNA. The terminal 2'-OH at the nick is important for the attack of the 3'-OH on the 5'-adenylated strand to form a phosphodiester, but dispensable for nick recognition and adenylylation of the 5'-PO4 strand. The penultimate 2'-OH is important for nick recognition. Stable binding of Rnl2 at a nick depends on contacts to both the N-terminal adenylyltransferase domain and its signature C-terminal domain. Nick sensing also requires adenylylation of Rnl2. These results provide insights to the evolution of nucleic acid repair systems.  相似文献   

8.
Numerous agents can damage the DNA of prokaryotes in the environment (e.g., reactive oxygen species, irradiation, and secondary metabolites such as antibiotics, enzymes, starvation, etc.). The large number of potential DNA-damaging agents, as well as their diverse modes of action, precludes a simple test of DNA damage based on detection of nucleic acid breakdown products. In this study, free 3'-OH DNA ends, produced by either direct damage or excision DNA repair, were used to assess DNA damage. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) is a procedure in which 3'-OH DNA ends are enzymatically labeled with dUTP-fluorescein isothiocyanate using TdT. Cells labeled by this method can be detected using fluorescence microscopy or flow cytometry. TUNEL was used to measure hydrogen peroxide-induced DNA damage in the archaeon Haloferax volcanii and the bacterium Escherichia coli. DNA repair systems were implicated in the hydrogen peroxide-dependent generation of 3'-OH DNA ends by the finding that the protein synthesis inhibitors chloramphenicol and diphtheria toxin blocked TUNEL labeling of E. coli and H. volcanii, respectively. DNA damage induced by UV light and bacteriophage infection was also measured using TUNEL. This methodology should be useful in applications where DNA damage and repair are of interest, including mutant screening and monitoring of DNA damage in the environment.  相似文献   

9.
Synthetic analogs of (2'-5')oligo(A) were assayed for endonuclease activation in cell extracts and for inhibition of protein synthesis in intact cells. The analogs are triadenylates: (i) methylated in the terminal 3'-OH; (ii) methylated at all three 3'-OH groups; (iii) with different numbers of phosphate groups at the 5' terminus or with a methylene group between the beta- and gamma-phosphate. Only 5'-phosphorylated monomethylated analogs activate an endonuclease in cell extracts and are powerful inhibitors of protein synthesis in intact cells. The analogs with only one 5'-terminal phosphate may require addition of another phosphate for activity since the kinase inhibitor 2-aminopurine prevents endonuclease activation by this compound but not by the di- and triphosphate-terminated triadenylates. These results suggest that two terminal phosphates and one or two free 3'-OH are required for endonuclease activation and inhibition of protein synthesis. The monomethylated analogs are more active than (2'-5')pppA3 because of their resistance to degradation by cellular enzymes. Accordingly, the monomethylated analogs cause a prolonged inhibition of protein synthesis in human fibroblasts treated with nanomolar concentrations of these compounds.  相似文献   

10.
A facile synthetic method of a phosphorothioate dimer block was investigated. Dinucleoside phosphite triester intermediates were obtained in one-pot synthesis by the coupling of a protected nucleoside bearing free 5'-OH and a protected nucleoside bearing free 3'-OH in the presence of phosphorous trichloride (PCl3) and 1,2,4-triazole. The intermediates were easily sulfurized to afford the desired phosphorothioate dimer blocks in 33-64% overall yields.  相似文献   

11.
C Goffin  V Bailly    W G Verly 《Nucleic acids research》1987,15(21):8755-8771
Using synthetic oligodeoxynucleotides with 3'-OH ends and 32P-labelled 5'-phosphate ends and the technique of polyacrylamide gel electrophoresis, it is shown that, in the presence of the complementary polynucleotide, an AP (apurinic or apyrimidinic) site at the 3' or the 5' end of the labelled oligodeoxynucleotides does not prevent their ligation by T4 DNA ligase, although the reaction rate is decreased. This decrease is more severe when the AP site is at the 3' end; the activated intermediates accumulate showing that it is the efficiency of the adenyl-5'-phosphate attack by the 3'-OH of the base-free deoxyribose which is mostly perturbed. Using the same technique, it is shown that a mispaired base at the 3' or 5' end of oligodeoxynucleotides does not prevent their ligation. A one-nucleotide gap, limited by 3'-OH and 5'-phosphate, can also be closed by T4 DNA ligase although with difficulty; here again the activation of the 5'-phosphate end does not seem to be slowed down, but rather the 3'-OH attack of the adenyl-5'-phosphate. All these anomalous ligations take place with the nick or the gap in front of a continuous complementary strand. Blunt ends ligation of correct duplexes occurs readily; however an AP site or a mispaired base at the 3' or 5' end of one strand of the duplexes prevents ligation between these strands. But a missing nucleotide (responsible for one unpaired nucleotide protruding at the 3' or 5' end of the complementary strand) does not stop ligation of the shorter oligodeoxynucleotides between independent duplexes.  相似文献   

12.
Expression of the human T-cell leukemia virus type I (HTLV-I) Tax oncoprotein rapidly engenders DNA damage as reflected in a significant increase of micronuclei (MN) in cells. To understand better this phenomenon, we have investigated the DNA content of MN induced by Tax. Using an approach that we termed FISHI, fluorescent in situ hybridization and incorporation, we attempted to characterize MN with centric or acentric DNA fragments for the presence or absence of free 3'-OH ends. Free 3'-OH ends were defined as those ends accessible to in situ addition of digoxigenin-dUTP using terminal deoxynucleotidyl transferase. MN were also assessed for centromeric sequences using standard fluorescent in situ hybridization (FISH). Combining these results, we determined that Tax oncoprotein increased the frequency of MN containing centric DNA with free 3'-OH and decreased the frequency of MN containing DNA fragments that had incorporation-inaccessible 3'-ends. Recently, it has been suggested that intracellular DNA breaks without detectable 3'-OH ends are stabilized by the protective addition of telomeric caps, while breaks with freely detectable 3'-OH are uncapped and are labile to degradation, incomplete replication, and loss during cell division. Accordingly, based on increased detection of free 3'-OH-containing DNA fragments, we concluded that HTLV-I Tax interferes with protective cellular mechanism(s) used normally for stabilizing DNA breaks.  相似文献   

13.
The combination of 2'-OH protection in ribonucleosides by the p-nitrophenylethylsulfonyl (NPES) group with the 3'-(beta-cyanoethyl) (N,N-diisopropyl)-phosphoramidite function reveals a new approach to oligoribonucleotide synthesis. The corresponding adenosine and guanosine derivatives have been applied to automated solid phase synthesis with good success.  相似文献   

14.
A new method to introduce a benzyl group onto the 2'-OH of purine ribonucleoside is described. Thus, 6-chloropurine 3'-O-benzoylriboside and its 5'-O-trityl congener were condensed with benzyl alcohol using the Mitsunobu reaction to give the 2'-O-benzyl derivative. The yields were varied from 4.6 to 62.9% depending on the solvent used. The product was converted to adenosine, indicating that the stereochemistry at C-2' is retained.  相似文献   

15.
Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3'-OH unprotected cleavable fluorescent 2'-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first version, all four modified nucleotides bearing a cleavable disulfide Alexa Fluor(R) 594 dye were assayed for their ability to act as a reversible stop for the incorporation of the next labeled base. Their use in SBS leaded to a signal-no signal output after successive addition of each labeled nucleotide during the sequencing process (binary read-out). Solid-phase immobilized synthetic DNA target sequences were used to optimize the method that has been applied to DNA polymerized colonies or clusters obtained by in situ solid-phase amplification of fragments of genomic DNA templates.  相似文献   

16.
Nucleosides can be esterified to solid-phase supports using uronium or phosphonium coupling reagents and a coupling additive, such as 1-hydroxybenzotriazole (HOBT), 7-aza-1-hydroxybenzotriazole (HOAT), N-methylimidazole (NMI), or 4-(dimethylamino)pyridine (DMAP). However, DMAP was far superior to other additives and high nucleoside loadings (up to 60 micromol/g) and rapid coupling reactions (< or = 10 min) were possible. Hydroxyl-derivatized CPG was attached to nucleosides with 3'-succinyl or 3'-hydroquinone-O, O'-diacetic acid (HQDA or Q-Linker) carboxyl groups through a primary ester linkage. Alternatively, supports derivatized with succinic acid or the Q-Linker were attached directly to the 3'-OH group of nucleosides through a secondary ester linkage. Uronium reagents (HATU or HBTU) gave the best results with the HQDA linker arm, while the bromophosphonium (BrOP or PyBrOP) reagents were best with the succinyl linker arm. In all cases, the coupling reactions were much faster than previous methods using carbodiimide coupling reagents. The ease and speed of the reaction make this support derivatization procedure suitable for automated in situ couplings on DNA synthesizers.  相似文献   

17.
Treatment with the anthelmintic fenbendazole induces fragmentation of genomic DNA in intestinal cells of Haemonchus contortus. This effect is characterized by DNA fragments with 3'-hydroxyls (OH). Investigation into DNases responsible identified intestinal DNase activities that produce DNA fragments with 3'-OH. However, this interpretation was complicated by a mixture of activities in the intestinal fractions evaluated. In addition, intestinal activities displayed non-classic characteristics. Here it is shown that heparin sulfate (HS) fractionation enriched for intestinal DNases that produce 3'-OH. The 2.0M NaCl fraction of HS contained DNase activity that produced 3'-OH with minimal contamination by activity that produced 3'-phosphates (P). 3'-OH were produced under acidic (pH 5.0) or neutral (pH 7.0) conditions by DNases in this fraction. These DNases were sensitive to EDTA under each condition. Furthermore, EDTA-sensitive DNase activity in this fraction digested H. contortus intestinal cell nuclear DNA in histological sections, producing 3'-OH under acidic and neutral conditions. DNases at 36 and 38.5kDa in this fraction each produced 3'-OH at pH 5.0 when gel eluted, and each activity was sensitive to EDTA. Hence, the 36 and 38.5kDa DNases in the 2.0M NaCl HS intestinal fraction have characteristics expected for candidate DNases that mediate DF in H. contortus intestinal cell nuclei induced by fenbendazole. DNase activity that produces 3'-OH under acidic condition with sensitivity to EDTA is unconventional for classic acidic or neutral DNases and is a unique finding for nematodes. Excretory/secretory products from the worm and whole worm lysates were also explored as sources to fractionate intestinal DNases identified. HS fractionation of those worm samples did not clearly resolve the intestinal DNases of interest, although DNases with distinct characteristics were identified in each source.  相似文献   

18.
In case of RNA's, multiple labelling can be achieved by exploiting the available 2'-OH position of sugar moiety of nucleosides. N-protected nucleoside viz. cytidine has been prepared using a selective photolabile group i.e. 2-nitrobenzyloxycarbonyl. After protection of 5',3'-OH with 1,1,3,3,-tetraisopropyl disiloxyl group, 2'-OH was selectively activated by using N,N'-carbonyl diimidazole (CDI) and subsequently condensed with dansyl amide. After usual deprotection step comparative fluorescence studies of the monomer were carried out using different solvents/buffers.  相似文献   

19.
The 3' single-strand telomeric overhang (3'-OH) is a key component of telomere structure. Although telomere length has been well analyzed in a variety of human cancers, no information is available on the 3'-OH length in cancers. In the present study, we examined the 3'-OH length in normal and malignant endometria using telomere-oligonucleotide ligation assay. Although 3'-OH lengths varied among patients, 3'-OH length observed in endometrial cancers was significantly shorter than that found in samples derived from normal endometria (P < 0.001: Student's t-test), suggesting that erosion of 3'-OH length induces impaired telomeric integrity and genomic instability, leading to carcinogenesis. Interestingly, we found that the most aggressive subtypes of endometrial cancers harbored significantly longer 3'-OH length than those with non-aggressive subtypes (P < 0.001: Sheffe's test), suggesting that cancer cells with long 3'-OH length have growth advantage due to their stabilized telomere ends. In contrast, we failed to observe an association between overall telomere length and any clinicopathological characteristics of endometrial cancers. These findings suggest that erosion of 3'-OH length, rather than overall telomere length, play roles in endometrial carcinogenesis. Furthermore, long 3'-OH may serve as a molecular marker for aggressive phenotype of tumors.  相似文献   

20.
Certain aminoacyl-tRNA synthetases prevent potential errors in protein synthesis through deacylation of mischarged tRNAs. For example, the close homologs isoleucyl-tRNA synthetase (IleRS) and valyl-tRNA synthetase (ValRS) deacylate Val-tRNA(Ile) and Thr-tRNA(Val), respectively. Here we examined the chemical requirements at the 3'-end of the tRNA for these hydrolysis reactions. Single atom substitutions at the 2'- and 3'-hydroxyls of a variety of mischarged RNAs revealed that, while acylation is at the 2'-OH for both enzymes, IleRS catalyzes deacylation specifically from the 3'-OH and not from the 2'-OH. In contrast, ValRS can deacylate non-cognate amino acids from the 2'-OH. Moreover, for IleRS the specificity for a 3'-O location of the scissile ester bond could be forced to the 2'-position by introduction of a 3'-O-methyl moiety. Cumulatively, these and other results suggest that the editing sites of these class I aminoacyl-tRNA synthetases have a degree of inherent plasticity for substrate recognition. The ability to adapt to subtle differences in mischarged RNAs may be important for the high accuracy of aminoacylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号