首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetic studies on the thermal degradation of purified poliovirus   总被引:7,自引:0,他引:7  
  相似文献   

2.
3.
The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions.  相似文献   

4.
The microbial degradation of quinoline by Comamonas acidovorans was studied in a laboratory scale stirred tank reactor. In continuous culture experiments using quinoline as a sole source of carbon and nitrogen, it was shown by means of mass balances that quinoline was converted completely to biomass, carbon dioxide, and ammonia. Degradation rates up to 0.7 g/L h were obtained. Measured yield coefficients Y(x/s) for quinoline were about 0.7 g/g, which is in agreement with the theoretical value for complete mineralization. Kinetic constants based on Haldane substrate inhibition were evaluated. The values were mu(max) = 0.48 h(-1), K(i) = 69 mg/L, and K(s) < 1.45 mg/L. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
Degradation of the 2'-phosphates, 3'-phosphates, 5'-phosphates, 2':3'-cyclic phosphates, 3':5'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) of adenosine, guanosine, cytidine, and uridine catalyzed by Fusarium phosphodiesterase-phosphomonoesterase was followed by means of high performance liquid chromatography. All the nucleotides were susceptible to the enzyme to a greater or lesser degree, and the kinetic constants, Km and kcat, were determined at pH 5.3 and 37 degrees C. These constants were affected by both the nucleoside moiety and the position of the phosphate. Judged from kcat/Km, the 3'-phosphates, 2':3'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) were good substrates, whereas the 2'-phosphates, 5'-phosphates, and 3':5'-cyclic phosphates were poor substrates except for adenosine 2'-phosphate, adenosine 5'-phosphate, and cytidine 5'-phosphate, which were hydrolyzed relatively easily. Among the phosphodiesters, the 2':3'-cyclic phosphates of adenosine, guanosine, and cytidine; and the 3':5'-cyclic phosphates of adenosine and cytidine were degraded into nucleoside and inorganic phosphate without release of intermediary phosphomonoester into the medium. Other phosphodiesters were degraded stepwise releasing definite intermediates.  相似文献   

6.
7.
8.
The degradation of phenol by Rhodococcus sp. P1 was studied in continuous culture systems. The organism could be adapted by slowly increasing concentration, step by step, up to 30.0 g · 1-1 phenol in the influent. The degradation rate reached values of about 0.3 g · g dry mass-1 ·h-1. Large step increases in phenol concentration and addition of further substrates (e.g., catechol) were tolerated up to a certain concentration. With increasing dilution rate and increasing inlet phenol concentration the stability of the system decreased.  相似文献   

9.
Rhodococcus sp. P1 utilizes phenol as the sole carbon and energy source via the beta-ketoadipate pathway. In batch cultivation, concentrations up to 2.8 g.l-1 phenol were degraded. The highest values for the specific growth rate of 0.32 h-1 were obtained at concentrations near 0.25 g.l-1. At higher concentrations, substrate inhibition was observed, characterized by increases in lag phase and decreasing growth rates. A mathematical expression was proposed to fit the kinetic pattern of phenol inhibition on the specific growth rate mu: [formula: see text] Nomenclature: K- Exponent of the inhibition function, Ks- Monod saturation constant, g.l-1, KI- Inhibition constant, g.l-1, S- Substrate concentration in culture broth, g.l-1, So- Initial substrate concentration, g.l-1, Y- Yield constant, g cell dry mass.g substrate-1, mu- Specific growth rate, h-1, mu max- Maximum growth rate, h-1.  相似文献   

10.
Two dipeptides, glycyl-L-leucine (G-L) and L-leucyl-glycine (L-G), the concentrations of which were 10 mmol/L, were degraded in subcritical water in order to understand fully the phenomena occurring during treatment. Treatment was administered in a stainless steel tubular reactor, which was connected to an HPLC pump and immersed in an oil bath at 200-240 °C, with residence times of 10-180 s. When G-L and L-G were treated, L-G and G-L significantly formed, respectively, and then they gradually decreased at every temperature. Irrespective of the kind of substrate, ring formation occurred, and cyclo-(glycyl-L-leucine) was one of the final products. The reaction rate constants related to degradation were estimated under the assumption that all the reactions obeyed first-order kinetics, and the simulated results corresponded well with the experimental ones in every case.  相似文献   

11.
The human hemorphin LVV-H7 belongs to the class of micro-opiod receptor-binding peptides, which also exhibits significant affinity to insulin-regulated aminopeptidase (IRAP) thereby affecting IRAP inhibition. The inhibitory potency towards IRAP is of pharmaceutical interest for the treatment of Alzheimer's disease. Consecutive N-terminal cleavage of the first two amino acid residues of LVV-H7 affects a drastic increase of the binding affinity (V-H7) but ultimately leads to its complete abolition after cleavage of the next amino acid residue (H7). Therefore, we investigated LVV-H7 truncation by aminopeptidase M (AP-M) identified as a LVV-H7 degrading enzyme potentially regulating hemorphin activity towards IRAP in vivo. Using a selective quantitative multi-component capillary zone electrophoretic method (CZE-UV), we analyzed the AP-M-mediated subsequent proteolysis of the hemorphins LVV-H7 (L32-F41), VV-H7 (V33-F41), and V-H7 (V34-F41) in vitro. Incubations were carried out with synthetic hemorphins applied as single substrates or in combination. Maximum velocities (V(max)), catalytic constants (turnover numbers, kcat), and specific enzyme activities (EA) were calculated. L32 cleavage from LVV-H7 happens more than two-times faster (kcat: 140 min(-1) +/- 9%, EA: 1.0 U/mg +/- 9%) than V33 cleavage from VV-H7 (kcat: 61 min(-1) +/- 10%, EA: 0.43 U/mg +/- 10%) or V32 deletion from V-H7 (kcat: 62 min(-1) +/- 8%, EA: 0.46 U/mg +/- 8%). In contrast, we showed that H7 (Y35-F41) was neither degraded by porcine AP-M nor did it act as an inhibitor for this enzyme. Determined turnover numbers were in the same dimension as those reported for dynorphin degradation. This is the first time that AP-M-mediated truncation of natural underivatized LVV-H7 and its physiological metabolites was analyzed to determine kinetic parameters useful for understanding hemorphin processing and designing hemorphin-derived drug candidates.  相似文献   

12.
Aqueous suspensions of bacteriorhodopsin in purple membrane fragments from Halobacterium halobium have been subjected to microsecond flash photometry utilizing both unpolarized and polarized light. Depletion of the ground state chromophore centered at 570 nm is accompanied by the formation of transients absorbing maximally at 410 nm and 660 nm with rise times of about 0.4 and 6 ms, respectively. Decay of both transients and reformation of the ground state chromophore occurs with identical first-order kinetics with a half life of about 6 ms. All three chromophores are polarized with dichroic ratios which remain constant throughout the transient lifetimes, indicating that Brownian rotation of the chromophore within the membrane is considerably restricted. Whereas agents which induce permeability of membranes to protons (2,4-dinitrophenol, carbonylcyanide-m-chlorophenylhydrazone) and non-specific univalent cations (gramicidin) or inhibit ATPase (ouabain) had no influence, the K+-specific ionophore valinomycin in the presence of K+ inhibited and quenched the formation of the 660 nm transient with concomitant increase in lifetime of the 410 nm transient and delay in recovery of the 570 nm chromophore. High concentrations of Na+ produced an effect similar to that of valinomycin. The relationship of these data to the mechanism of the proton pump in the intact bacterium is discussed, with the conclusion that the 410 nm transient performs a key role.  相似文献   

13.
The aim of this work was to study the influence of three major factors (light, atmospheric oxygen, temperature) responsible for the degradation of tocopherols. The evolution of alpha-tocopherol contents was analysed by high-performance liquid chromatography. Taguchi's experimental design was applied to establish a mathematical model of alpha-tocopherols degradation in function of the studied parameters especially in a domain of temperature between 50 degrees C and 150 degrees C. The results show that the major factor is the temperature, especially above 100 degrees C. Light is a negligible factor, meaning that degradation is mainly due to an autoxidation phenomenon. Moreover, only interactions between temperature and atmospheric oxygen have been observed especially above 100 degrees C. The mathematical model was validated for a temperature of 75 degrees C and permits to calculate a predictive speed of degradation in this domain.  相似文献   

14.
15.
Kinetic studies of the phenol sulphotranferase reaction   总被引:7,自引:0,他引:7  
  相似文献   

16.
17.
18.
Kinetic studies of protein-protein interactions   总被引:6,自引:0,他引:6  
The structure of a protein-protein interaction, its affinity and thermodynamic characteristics depict a 'frozen' state of a complex. This picture ignores the kinetic nature of complex formation and dissociation, which are of major biological and biophysical interest. This review highlights recent advances in deciphering the kinetic pathway of protein-protein complexation, the nature of the encounter complex, transition state and intermediate along the reaction, and the effects of mutation, viscosity, pH and salt on association.  相似文献   

19.
Kinetic studies of formate dehydrogenase   总被引:4,自引:1,他引:3       下载免费PDF全文
1. The kinetic mechanism of formate dehydrogenase is a sequential pathway. 2. The binding of the substrates proceeds in an obligatory order, NAD(+) binding first, followed by formate. 3. It seems most likely that the interconversion of the central ternary complex is extremely rapid, and that the rate-limiting step is the formation or possible isomerization of the enzyme-coenzyme complexes. 4. The secondary plots of the inhibitions with HCO(3) (-) and NO(3) (-) are non-linear, which suggests that more than one molecule of each species is able to bind to the same enzyme form. 5. The rate of the reverse reaction with carbon dioxide at pH6.0 is 20 times that with bicarbonate at pH8.0, although no product inhibition could be detected with carbon dioxide. The low rate of the reverse reaction precluded any steady-state analysis as the enzyme concentrations needed to obtain a measurable rate are of the same order as the K(m) values for NAD(+) and NADH.  相似文献   

20.
Kinetic studies of adenine phosphoribosyltransferase   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号