首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
In one current strategy to develop membrane-soluble pronucleotides, the phosphoramidate derivatives of the approved anti-HIV nucleosides 2',3'-didehydro-3'-deoxythymidine (d4T), 3'-azido-3'-deoxythymidine (AZT), (-)-beta-L-2',3'-dideoxy-3'- thiacytidine (3TC), and 2',3'-dideoxyadenosine (ddA) exhibit promising antiviral activity. However, the non-stereoselective synthetic route results in a mixture of diastereoisomers, which differ in the configuration of the phosphorus chiral center. Since it is believed that enzymatic ester hydrolysis is the first step in the intracellular activation of these prodrugs and that this process could be dependent on the stereochemistry at the phosphorus center, analytical methods must be developed. In the present work, in vitro evaluation of the selectivity of pig liver esterase (PLE) towards each diastereomer of d4T, AZT, 3TC, and ddA prodrugs has been investigated, applying our recently published HPLC-MS procedure using a polysaccharide-type chiral stationary phase. This method has been used to analyze the products of the PLE-catalyzed hydrolysis of the pronucleotides. It was found that both diastereomers of the four prodrugs were substrates for PLE.  相似文献   

3.
To examine the role of the mitochondrial polymerase (Pol gamma) in clinically observed toxicity of nucleoside analogs used to treat AIDS, we examined the kinetics of incorporation catalyzed by Pol gamma for each Food and Drug Administration-approved analog plus 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (FIAU), beta-L-(-)-2',3'-dideoxy-3'-thiacytidine (-)3TC, and (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA). We used recombinant exonuclease-deficient (E200A), reconstituted human Pol gamma holoenzyme in single turnover kinetic studies to measure K(d) (K(m)) and k(pol) (k(cat)) to estimate the specificity constant (k(cat)/K(m)) for each nucleoside analog triphosphate. The specificity constants vary more than 500,000-fold for the series ddC > ddA (ddI) > 2',3'-didehydro-2',3'-dideoxythymidine (d4T) > (+)3TC > (-)3TC > PMPA > azidothymidine (AZT) > Carbovir (CBV). Abacavir (prodrug of CBV) and PMPA are two new drugs that are expected to be least toxic. Notably, the higher toxicities of d4T, ddC, and ddA arose from their 13-36-fold tighter binding relative to the normal dNTP even though their rates of incorporation were comparable with PMPA and AZT. We also examined the rate of exonuclease removal of each analog after incorporation. The rates varied from 0.06 to 0.0004 s(-1) for the series FIAU > (+)3TC approximately equal to (-)3TC > CBV > AZT > PMPA approximately equal to d4T > ddA (ddI) > ddC. Removal of ddC was too slow to measure (<0.00002 s(-1)). The high toxicity of dideoxy compounds, ddC and ddI (metabolized to ddA), may be a combination of high rates of incorporation and ineffective exonuclease removal. Conversely, the more effective excision of (-)3TC, CBV, and AZT may contribute to lower toxicity. FIAU is readily extended by the next correct base pair (0.13 s(-1)) faster than it is removed (0.06 s(-1)) and, therefore, is stably incorporated and highly mutagenic. We define a toxicity index for chain terminators to account for relative rates of incorporation versus removal. These results provide a method to rapidly screen new analogs for potential toxicity.  相似文献   

4.
Anti-HIV activity and cytotoxicity were tested for novel phosphonate derivatives of AZT, d4T and ddA. For d4T phosphonate derivatives the most active was 2′,3′-Dideoxy-2′,3′-didehydrothymidine 5′-isopropylphosphite and among the AZT phosphonate derivatives highest activity was shown by 2′,3′-Dideoxy-3′-azidothymidine 5′-cyclohexylphosphite.  相似文献   

5.
Anti-HIV activity and cytotoxicity were tested for novel phosphonate derivatives of AZT, d4T and ddA. For d4T phosphonate derivatives the most active was 2',3'-Dideoxy-2',3'-didehydrothymidine 5'-isopropylphosphite and among the AZT phosphonate derivatives highest activity was shown by 2',3'-Dideoxy-3'-azidothymidine 5'-cyclohexylphosphite.  相似文献   

6.
The total fraction of aminoacyl-tRNA synthases from Escherichia coli has been shown to catalyze the synthesis of the bis(5'-nucleosidyl) oligophosphates Ap4AZT, Ap4d4T, Ap43TC, and Ap4ACV, as well as Ap3AZT and Ap3d4T, from [alpha-32P]ATP and the corresponding nucleoside-5'-tri(or di)phosphate. The resulting compounds, characterized by HPLC, are resistant to alkaline phosphatase. Ap4AZT, Ap4d4T, and Ap43TC are formed with approximately equal efficiency, whereas the efficiencies of the synthesis of Ap4ACV, Ap3AZT, and Ap3d4T are three- to fivefold lower. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.  相似文献   

7.
8.
Transmission of HIV from mother to infant can be effectively prevented by zidovudine (3'-azido-3'-deoxythymidine; AZT) alone or in combination with other anti-retroviral drugs; however, significant evidence for genotoxicity, including transplacental carcinogenicity in mice, has been reported for AZT. A method, based upon solid phase extraction (SPE) in the 96-well format, gradient liquid chromatography (LC), and electrospray mass spectrometry (MS), was developed and validated to measure serum concentrations in maternal C57BL/6N and fetal B6C3F1 mice of the nucleoside analogs AZT, lamivudine ((-)2',3'-dideoxy-3'-thiacytidine; 3TC), and several metabolites selected based on importance in detoxification and bioactivation reactions. After intravenous (i.v.) and oral dosing with either 400 mg/kg AZT or 200 mg/kg 3TC, pharmacokinetics were determined for AZT, AZT-5'-glucuronide, 3'-amino-3'-deoxythymidine (AMT), AZT-5'-phosphate, 3TC, and 3TC-5'-phosphate in serum of adult female mice. Pharmacokinetics were also determined in spleen for AZT-5'-phosphate and 3TC-5'-phosphate following i.v. dosing. In addition, a preliminary assessment was made of placental transfer of AZT and 3TC and the presence of metabolites in the fetal compartment. The method described provides a means to evaluate thoroughly metabolism and disposition of anti-retroviral nucleoside analogs in maternal and fetal mice for comprehensive studies of genotoxicity.  相似文献   

9.
A series of hydrophobic, water soluble and non-toxic amino acid phosphoramidate monoesters of dideoxyadenosine (ddA) and 3'-azido-3'-deoxythymidine were shown to inhibit the replication of HIV-1 in human peripheral blood mononuclear cells (PBMC) from two donors. The tryptophan methyl ester phosphoramidates of AZT and ddA were equally potent (EC50S = 0.3-0.4 microM), while the phenyl methyl ester of ddA was 40- to 100- fold more potent than the AZT derivatives. The alaninyl methyl ester of AZT was found to be 70- fold more potent than the ddA derivative. The methyl amide derivatives were found to be 5-20 fold less active than the methyl esters for the ddA series, while for AZT the derivatives were found to be of similar potency or 60- to 166- fold more potent than the methylesters.  相似文献   

10.
A series of hydrophobic, water soluble and non-toxic amino acid phosphoramidate monoesters of dideoxyadenosine (ddA) and 3′-azido-3′-deoxythymidine were shown to inhibit the replication of HIV-1 in human peripheral blood mononuclear cells (PBMC) from two donors. The tryptophan methyl ester phosphoramidates of AZT and ddA were equally potent (EC50S = 0.3–0.4 μM), while the phenyl methyl ester of ddA was 40- to 100- fold more potent than the AZT derivatives. The alaninyl methyl ester of AZT was found to be 70- fold more potent than the ddA derivative. The methyl amide derivatives were found to be 5–20 fold less active than the methyl esters for the ddA series, while for AZT the derivatives were found to be of similar potency or 60- to 166- fold more potent than the methylesters.  相似文献   

11.
Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs'' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication.  相似文献   

12.
Lee H  Hanes J  Johnson KA 《Biochemistry》2003,42(50):14711-14719
Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.  相似文献   

13.
The total fraction of aminoacyl-tRNA synthases from Escherichia coli has been shown to catalyze the synthesis of the bis(5′-nucleosidyl) oligophosphates Ap4AZT, Ap4d4T, Ap43TC, and Ap4ACV, as well as Ap3AZT and Ap3d4T, from [α-32P]ATP and the corresponding nucleoside-5′-tri(or di)phosphate. The resulting compounds, characterized by HPLC, are resistant to alkaline phosphatase. Ap4AZT, Ap4d4T, and Ap43TC are formed with approximately equal efficiency, whereas the efficiencies of the synthesis of Ap4ACV, Ap3AZT, and Ap3d4T are three- to fivefold lower.  相似文献   

14.
Sho-saiko-to (SST), a traditional Kampo medicine, has been examined for its inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication in peripheral blood mononuclear cells (PBMCs). SST alone moderately inhibited HIV-1 replication at a concentration of 25 μg/ml. When SST was combined with zidovudine (AZT), lamivudine (3TC) or AZT plus 3TC, SST enhanced the anti-HIV-1 activity of 3TC. In contrast, SST slightly enhanced the anti-HIV-1 activity of AZT plus 3TC but did not enhance the activity of AZT alone. These results suggest that the combination of SST and 3TC has potential as a chemother-apeutic modality of HIV-1 infection.  相似文献   

15.
A selective and high throughput liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to separate, detect and simultaneously quantify lamivudine (3TC), stavudine (d4T) and nevirapine (NVP) in human plasma using metaxalone as internal standard (IS). After solid phase extraction (SPE), the analytes and the IS were chromatographed on a Symmetry C18 (150 mmx3.9 mm i.d., 5 microm particle size) column using 5 microL injection volume with a run time of 4.5 min. An isocratic mobile phase consisting of 0.5% glacial acetic acid in water:acetonitrile (20:80, v/v) was used to separate all these drugs. The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring mode (MRM) without polarity switch. The method was validated over the range of 25-3000 ng/mL for 3TC, 20-2000 ng/mL for d4T and 50-5000 ng/mL for NVP. The absolute recoveries for analytes (>or=86%) and IS (98.12%) achieved from spiked plasma samples were consistent and reproducible. Inter-batch and intra-batch precision (%CV) across four validation runs (LLOQ, LQC, MQC and HQC) was less than 10. The accuracy determined at these levels was within +/-8% in terms of relative error. The method was successfully applied to a pivotal bioequivalence study of [60 (3TC)+12 (d4T)+100 (NVP)] mg dispersible tablets in 60 healthy human subjects under fasting condition.  相似文献   

16.
The aim of this study was to evaluate the kinetics of lymphocyte proliferation during primary infection of macaques with pathogenic simian immunodeficiency virus (SIV) and to study the impact of short-term postexposure highly active antiretroviral therapy (HAART) prophylaxis. Twelve macaques were infected by intravenous route with SIVmac251 and given treatment for 28 days starting 4 h postexposure. Group 1 received a placebo, and groups 2 and 3 received combinations of zidovudine (AZT), lamivudine (3TC), and indinavir. Macaques in group 2 received AZT (4.5 mg/kg of body weight), 3TC (2.5 mg/kg), and indinavir (20 mg/kg) twice per day by the oral route whereas macaques in group 3 were given AZT (4.5 mg/kg) and 3TC (2.5 mg/kg) subcutaneously twice per day, to improve the pharmacokinetic action of these drugs, and a higher dose of indinavir (60 mg/kg). The kinetics of lymphocyte proliferation were analyzed by monitoring 5-bromo-2'-deoxyuridine (BrdU) uptake ex vivo and by fluorescence-activated cell sorting analysis. HAART did not protect against SIV infection but did strongly impact on virus loads: viremia was delayed and lowered during antiviral therapy in group 2, with better control after treatment was stopped, and in group 3, viremia was maintained at lower levels during treatment, with virus even undetectable in the blood of some macaques, but there was no evidence of improved control of the virus after treatment. We provide direct evidence that dividing NK cells are detected earlier than dividing T cells in the blood (mostly in CD45RA(-) T cells), mirroring plasma viremia. Dividing CD8(+) T cells were detected earlier than dividing CD4(+) T cells, and the highest percentages of proliferating T cells coincided with the first evidence of partial control of peak viremia and with an increase in the percentage of circulating gamma interferon-positive CD8(+) T cells. The level of cell proliferation in the blood during SIV primary infection was clearly associated with viral replication levels because the inhibition of viral replication by postexposure HAART strongly reduced lymphocyte proliferation. The results and conclusions in this study are based on experiments in a small numbers of animals and are thus preliminary.  相似文献   

17.
Zalcitabine (ddC), lamivudine (3TC), didanosine (ddI), stavudine (d4T), carbovir (CBV), zidovudine (AZT), tenofovir (PMPA) and its administrated form (tenofovir diisoproxyl fumarate, TDF), are nucleosides currently approved in HIV therapy. To facilitate pharmacokinetics studies, a specific reversed-phase high-performance liquid chromatography (HPLC) method was developed for their analysis in rat plasma. The method involved a quantitative recovery of these drugs from rat plasma by solid-phase extraction on Oasis HLB Waters cartridges followed by optimised HPLC separation on an Atlantis dC18 column with acetic acid-hydroxylamine buffer (ionic strength 5mM, pH 7)-acetonitrile elution gradient. Quantitation was performed by HPLC/UV at 260 nm. Linear calibration curves were obtained within a 30-10,000 ng/mL plasma concentration range. Correlation coefficients (r2) greater than 0.992 were obtained by least-squares regression and limits of quantification were in 30-90 ng/mL concentration range. Quantitative parameters (accuracy, intra-day repeatability and inter-day reproducibility) yielded satisfactory results. Finally, a new buffer, obtained with acetic acid and hydroxylamine, has been tested in HPLC/ESI-MS/MS and appears to be an efficient volatile buffer in the medium 5-7 pH range. Indeed, at pH 7 and low ionic strength (5 mM), its buffer capacity is one hundred times higher to that obtained for the usual acetic acid/ammonia buffer.  相似文献   

18.
Since the discovery of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2',3'-didehydro-2',3'dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

19.
Abstract

The synthesis and the anti-HIV activity of two mononucleoside phosphotriester derivatives of 3′-azido-2′,3′-dideoxythymidine (AZT) and 2′,3′-dideoxyadenosine (ddA) incorporating a new kind of phosphate protecting group, namely S-pivaloyl-4-thiobutyl (tBuSATB), are reported.  相似文献   

20.
Abstract

Antiretroviral nucleoside drugs used against the human immunodeficiency virus (HIV) infection have been analyzed using negative ion electrospray ionization (ESI) mass spectrometry and collision-induced dissociation (CID-MS/MS). Mass fragmentation of azidothymidine (AZT), didanosine (ddI), dideoxycytidine (ddC) and dideoxythiacytidine (3TC) were obtained at different cone voltages and collision energies. Fragmentation of purines and pyrimidines occurred by different pathways. For purines (ddI), the fragmentation was similar to those found in endogenous nucleosides; mainly the pseudo molecular ion is present (M-H) and a cleavage through the glycosidic bond forming (B) was observed. For pyrimidines (AZT, ddC, 3TC), the fragmentation pathways were different from endogenous nucleosides; for AZT, the fragmentation occurred primarily through the elimination of the azido group in the 3′-position (M-H2-N3), whereas ddC and 3TC presented more complex fragmentation patterns. For ddC, fragmentation appeared to be dominated by a retro Diels-Alder mechanism (M-CONH). For 3TC, the sulfur atom in the sugar moiety provided greater stability to the charge, producing fragments where the charge resided initially in the dideoxyribose (M-C2O2H6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号